programming-examples/java/Graph_Problems_Algorithms/Java Program to Find MST(Minimum Spanning Tree) using Kruskal’s Algorithm.java

216 lines
7.8 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program to find mst using kruskals algorithm.Kruskals algorithm is a greedy algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized*/
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
public class KruskalAlgorithm
{
private List<Edge> edges;
private int numberOfVertices;
public static final int MAX_VALUE = 999;
private int visited[];
private int spanning_tree[][];
public KruskalAlgorithm(int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
edges = new LinkedList<Edge>();
visited = new int[this.numberOfVertices + 1];
spanning_tree = new int[numberOfVertices + 1][numberOfVertices + 1];
}
public void kruskalAlgorithm(int adjacencyMatrix[][])
{
boolean finished = false;
for (int source = 1; source <= numberOfVertices; source++)
{
for (int destination = 1; destination <= numberOfVertices; destination++)
{
if (adjacencyMatrix[source][destination] != MAX_VALUE && source != destination)
{
Edge edge = new Edge();
edge.sourcevertex = source;
edge.destinationvertex = destination;
edge.weight = adjacencyMatrix[source][destination];
adjacencyMatrix[destination][source] = MAX_VALUE;
edges.add(edge);
}
}
}
Collections.sort(edges, new EdgeComparator());
CheckCycle checkCycle = new CheckCycle();
for (Edge edge : edges)
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = edge.weight;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = edge.weight;
if (checkCycle.checkCycle(spanning_tree, edge.sourcevertex))
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = 0;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = 0;
edge.weight = -1;
continue;
}
visited[edge.sourcevertex] = 1;
visited[edge.destinationvertex] = 1;
for (int i = 0; i < visited.length; i++)
{
if (visited[i] == 0)
{
finished = false;
break;
}
else
{
finished = true;
}
}
if (finished)
break;
}
System.out.println("The spanning tree is ");
for (int i = 1; i <= numberOfVertices; i++)
System.out.print("\t" + i);
System.out.println();
for (int source = 1; source <= numberOfVertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberOfVertices; destination++)
{
System.out.print(spanning_tree[source][destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(number_of_vertices);
kruskalAlgorithm.kruskalAlgorithm(adjacency_matrix);
scan.close();
}
}
class Edge
{
int sourcevertex;
int destinationvertex;
int weight;
}
class EdgeComparator implements Comparator<Edge>
{
@Override
public int compare(Edge edge1, Edge edge2)
{
if (edge1.weight < edge2.weight)
return -1;
if (edge1.weight > edge2.weight)
return 1;
return 0;
}
}
class CheckCycle
{
private Stack<Integer> stack;
private int adjacencyMatrix[][];
public CheckCycle()
{
stack = new Stack<Integer>();
}
public boolean checkCycle(int adjacency_matrix[][], int source)
{
boolean cyclepresent = false;
int number_of_nodes = adjacency_matrix[source].length - 1;
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++)
{
adjacencyMatrix[sourcevertex][destinationvertex] = adjacency_matrix[sourcevertex[destinationvertex];
}
}
int visited[] = new int[number_of_nodes + 1];
int element = source;
int i = source;
visited[source] = 1;
stack.push(source);
while (!stack.isEmpty())
{
element = stack.peek();
i = element;
while (i <= number_of_nodes)
{
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 1)
{
if (stack.contains(i))
{
cyclepresent = true;
return cyclepresent;
}
}
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 0)
{
stack.push(i);
visited[i] = 1;
adjacencyMatrix[element][i] = 0;// mark as labelled;
adjacencyMatrix[i][element] = 0;
element = i;
i = 1;
continue;
}
i++;
}
stack.pop();
}
return cyclepresent;
}
}
/*
Enter the number of vertices
6
Enter the Weighted Matrix for the graph
0 6 8 6 0 0
6 0 0 5 10 0
8 0 0 7 5 3
6 5 7 0 0 0
0 10 5 0 0 3
0 0 3 0 3 0
The spanning tree is
1 2 3 4 5 6
1 0 6 0 0 0 0
2 6 0 0 5 0 0
3 0 0 0 7 0 3
4 0 5 7 0 0 0
5 0 0 0 0 0 3
6 0 0 3 0 3 0