programming-examples/java/Graph_Problems_Algorithms/Java Program to Check if a Directed Graph is a Tree or Not Using DFS.java

188 lines
4.8 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to check if graph is tree or not. Graph is tree if,
1. It has number of edges one less than number of vertices.
2. Graph is connected.
3. There are no cycles.*/
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
class DTGraph
{
static final int MAXV = 100;
static final int MAXDEGREE = 50;
public int edges[][] = new int[MAXV + 1][MAXDEGREE];
public int degree[] = new int[MAXV + 1];
public int nvertices;
public int nedges;
DTGraph()
{
nvertices = nedges = 0;
for (int i = 1; i <= MAXV; i++)
degree[i] = 0;
}
void read_CCGraph(boolean directed)
{
int x, y;
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
nvertices = sc.nextInt();
System.out.println("Enter the number of edges: ");
int m = sc.nextInt();
System.out.println("Enter the edges: <from> <to>");
for (int i = 1; i <= m; i++)
{
x = sc.nextInt();
y = sc.nextInt();
insert_edge(x, y, directed);
}
sc.close();
}
void insert_edge(int x, int y, boolean directed)
{
if (degree[x] > MAXDEGREE)
System.out.printf(
"Warning: insertion (%d, %d) exceeds max degree\n", x, y);
edges[x][degree[x]] = y;
degree[x]++;
if (!directed)
insert_edge(y, x, true);
else
nedges++;
}
void print_CCGraph()
{
for (int i = 1; i <= nvertices; i++)
{
System.out.printf("%d: ", i);
for (int j = degree[i] - 1; j >= 0; j--)
System.out.printf(" %d", edges[i][j]);
System.out.printf("\n");
}
}
}
public class CheckDirectedGraphisTree
{
static final int MAXV = 100;
static boolean processed[] = new boolean[MAXV];
static boolean discovered[] = new boolean[MAXV];
static int parent[] = new int[MAXV];
static void bfs(DTGraph g, int start)
{
Queue<Integer> q = new LinkedList<Integer>();
int i, v;
q.offer(start);
discovered[start] = true;
while (!q.isEmpty())
{
v = q.remove();
// process_vertex(v);
processed[v] = true;
for (i = g.degree[v] - 1; i >= 0; i--)
{
if (!discovered[g.edges[v][i]])
{
q.offer(g.edges[v][i]);
discovered[g.edges[v][i]] = true;
parent[g.edges[v][i]] = v;
}
}
}
}
static void initialize_search(DTGraph g)
{
for (int i = 1; i <= g.nvertices; i++)
{
processed[i] = discovered[i] = false;
parent[i] = -1;
}
}
static void process_vertex(int v)
{
System.out.printf(" %d", v);
}
static int connected_components(DTGraph g)
{
int c;
initialize_search(g);
c = 0;
for (int i = 1; i <= g.nvertices; i++)
{
if (!discovered[i])
{
c++;
// System.out.printf("Component %d:", c);
bfs(g, i);
// System.out.printf("\n");
}
}
return c;
}
static public void main(String[] args)
{
DTGraph g = new DTGraph();
g.read_CCGraph(true);
g.print_CCGraph();
boolean flag = false;
if (g.nedges == g.nvertices - 1)
{
flag = true;
if (connected_components(g) == 1 && flag == true)
{
System.out
.println("Graph is a Tree, as graph is connected and Euler's criterion is satisfied.");
}
}
else
{
System.out
.println("Graph is not a Tree, as Euler's criterion is not satisfied.");
}
}
}
/*
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges: <from> <to>
1 2
2 3
2 4
4 5
5 6
6 4
6 3
1: 2
2: 4 3
3:
4: 5
5: 6
6: 3 4
Graph is not a Tree, as Euler's criterion is not satisfied.
Enter the number of vertices:
4
Enter the number of edges:
3
Enter the edges: <from> <to>
1 3
1 2
3 4
1: 2 3
2:
3: 4
4:
Graph is a Tree, as graph is connected and Euler's criterion is satisfied.