143 lines
4.2 KiB
Java
143 lines
4.2 KiB
Java
|
package com.jwetherell.algorithms.mathematics;
|
||
|
|
||
|
/**
|
||
|
* In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around"
|
||
|
* upon reaching a certain value—the modulus (plural moduli). The modern approach to modular arithmetic was
|
||
|
* developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.
|
||
|
* <p>
|
||
|
* http://en.wikipedia.org/wiki/Modular_arithmetic
|
||
|
* <br>
|
||
|
* @author Szymon Stankiewicz <mail@stankiewicz.me>
|
||
|
* @author Justin Wetherell <phishman3579@gmail.com>
|
||
|
*/
|
||
|
public class Modular {
|
||
|
|
||
|
private static long modularAbs(long n, long mod) {
|
||
|
n %= mod;
|
||
|
if (n < 0)
|
||
|
n += mod;
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Adds two numbers in modulo arithmetic.
|
||
|
* This function is safe for large numbers and won't overflow long.
|
||
|
*
|
||
|
* @param a
|
||
|
* @param b
|
||
|
* @param mod grater than 0
|
||
|
* @return (a+b)%mod
|
||
|
*/
|
||
|
public static long add(long a, long b, long mod) {
|
||
|
if(mod <= 0)
|
||
|
throw new IllegalArgumentException("Mod argument is not grater then 0");
|
||
|
a = modularAbs(a, mod);
|
||
|
b = modularAbs(b, mod);
|
||
|
if(b > mod-a) {
|
||
|
return b - (mod - a);
|
||
|
}
|
||
|
return (a + b)%mod;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Subtract two numbers in modulo arithmetic.
|
||
|
* This function is safe for large numbers and won't overflow or underflow long.
|
||
|
*
|
||
|
* @param a
|
||
|
* @param b
|
||
|
* @param mod grater than 0
|
||
|
* @return (a-b)%mod
|
||
|
*/
|
||
|
public static long subtract(long a, long b, long mod) {
|
||
|
if(mod <= 0)
|
||
|
throw new IllegalArgumentException("Mod argument is not grater then 0");
|
||
|
return add(a, -b, mod);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiply two numbers in modulo arithmetic.
|
||
|
* This function is safe for large numbers and won't overflow or underflow long.
|
||
|
*
|
||
|
* Complexity O(log b)
|
||
|
*
|
||
|
* @param a
|
||
|
* @param b
|
||
|
* @param mod grater than 0
|
||
|
* @return (a*b)%mod
|
||
|
*/
|
||
|
|
||
|
public static long multiply(long a, long b, long mod) {
|
||
|
if(mod <= 0)
|
||
|
throw new IllegalArgumentException("Mod argument is not grater then 0");
|
||
|
a = modularAbs(a, mod);
|
||
|
b = modularAbs(b, mod);
|
||
|
if(b == 0) return 0;
|
||
|
return add(multiply(add(a, a, mod), b/2, mod), (b%2 == 1 ? a : 0), mod);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculate power in modulo arithmetic.
|
||
|
* This function is safe for large numbers and won't overflow or underflow long.
|
||
|
*
|
||
|
* Complexity O(log a * log b)
|
||
|
*
|
||
|
* @param a
|
||
|
* @param b integer grater or equal to zero
|
||
|
* @param mod grater than 0
|
||
|
* @return (a^b)%mod
|
||
|
*/
|
||
|
public static long pow(long a, long b, long mod) {
|
||
|
if(mod <= 0)
|
||
|
throw new IllegalArgumentException("Mod argument is not grater then 0");
|
||
|
if (b < 0)
|
||
|
throw new IllegalArgumentException("Exponent have to be grater or equal to zero");
|
||
|
a = modularAbs(a, mod);
|
||
|
if (a == 0 && b == 0)
|
||
|
throw new IllegalArgumentException("0^0 expression");
|
||
|
if (a == 0)
|
||
|
return 0;
|
||
|
long res = 1;
|
||
|
while(b > 0) {
|
||
|
if(b%2 == 1) res = multiply(res, a, mod);
|
||
|
a = multiply(a, a, mod);
|
||
|
b /= 2;
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Divide two numbers in modulo arithmetic.
|
||
|
* This function is safe for large numbers and won't overflow or underflow long.
|
||
|
* b and mod have to be coprime.
|
||
|
*
|
||
|
* Complexity O(sqrt(mod))
|
||
|
*
|
||
|
* @param a
|
||
|
* @param b non zero
|
||
|
* @param mod grater than 0
|
||
|
* @return (a/b)%mod
|
||
|
*/
|
||
|
|
||
|
public static long divide(long a, long b, long mod) {
|
||
|
a = modularAbs(a, mod);
|
||
|
b = modularAbs(b, mod);
|
||
|
if(mod <= 0)
|
||
|
throw new IllegalArgumentException("Mod argument is not grater then 0");
|
||
|
if (b == 0)
|
||
|
throw new IllegalArgumentException("Dividing by zero");
|
||
|
if (GreatestCommonDivisor.gcdUsingRecursion(b, mod) != 1) {
|
||
|
throw new IllegalArgumentException("b and mod are not coprime");
|
||
|
}
|
||
|
if (a == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (b == 1) {
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
long reverted = pow(b, Coprimes.getNumberOfCoprimes(mod)-1, mod);
|
||
|
return multiply(reverted, a, mod);
|
||
|
|
||
|
}
|
||
|
}
|