261 lines
8.2 KiB
Java
261 lines
8.2 KiB
Java
|
/*
|
||
|
This is java program to find the solution to the linear equations of any number of variables using the method of Gauss-Jordan algorithm.
|
||
|
*/
|
||
|
|
||
|
//This is a sample program to find the solution to the linear equations using the method of Gauss-Jordan algorithm
|
||
|
import java.util.Scanner;
|
||
|
|
||
|
public class Gauss_Jordan_Elimination
|
||
|
{
|
||
|
private static final double EPSILON = 1e-8;
|
||
|
|
||
|
private final int N; // N-by-N system
|
||
|
private double[][] a; // N-by-N+1 augmented matrix
|
||
|
|
||
|
// Gauss-Jordan elimination with partial pivoting
|
||
|
public Gauss_Jordan_Elimination(double[][] A, double[] b)
|
||
|
{
|
||
|
N = b.length;
|
||
|
// build augmented matrix
|
||
|
a = new double[N][N+N+1];
|
||
|
for (int i = 0; i < N; i++)
|
||
|
for (int j = 0; j < N; j++)
|
||
|
a[i][j] = A[i][j];
|
||
|
// only need if you want to find certificate of infeasibility (or compute inverse)
|
||
|
for (int i = 0; i < N; i++)
|
||
|
a[i][N+i] = 1.0;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
a[i][N+N] = b[i];
|
||
|
solve();
|
||
|
assert check(A, b);
|
||
|
}
|
||
|
|
||
|
private void solve()
|
||
|
{
|
||
|
// Gauss-Jordan elimination
|
||
|
for (int p = 0; p < N; p++)
|
||
|
{
|
||
|
int max = p;
|
||
|
for (int i = p+1; i < N; i++)
|
||
|
{
|
||
|
if (Math.abs(a[i][p]) > Math.abs(a[max][p]))
|
||
|
{
|
||
|
max = i;
|
||
|
}
|
||
|
}
|
||
|
// exchange row p with row max
|
||
|
swap(p, max);
|
||
|
// singular or nearly singular
|
||
|
if (Math.abs(a[p][p]) <= EPSILON)
|
||
|
{
|
||
|
continue;
|
||
|
// throw new RuntimeException("Matrix is singular or nearly singular");
|
||
|
}
|
||
|
// pivot
|
||
|
pivot(p, p);
|
||
|
}
|
||
|
// show();
|
||
|
}
|
||
|
|
||
|
// swap row1 and row2
|
||
|
private void swap(int row1, int row2)
|
||
|
{
|
||
|
double[] temp = a[row1];
|
||
|
a[row1] = a[row2];
|
||
|
a[row2] = temp;
|
||
|
}
|
||
|
|
||
|
|
||
|
// pivot on entry (p, q) using Gauss-Jordan elimination
|
||
|
private void pivot(int p, int q)
|
||
|
{
|
||
|
// everything but row p and column q
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
double alpha = a[i][q] / a[p][q];
|
||
|
for (int j = 0; j <= N+N; j++)
|
||
|
{
|
||
|
if (i != p && j != q) a[i][j] -= alpha * a[p][j];
|
||
|
}
|
||
|
}
|
||
|
// zero out column q
|
||
|
for (int i = 0; i < N; i++)
|
||
|
if (i != p) a[i][q] = 0.0;
|
||
|
// scale row p (ok to go from q+1 to N, but do this for consistency with simplex pivot)
|
||
|
for (int j = 0; j <= N+N; j++)
|
||
|
if (j != q) a[p][j] /= a[p][q];
|
||
|
a[p][q] = 1.0;
|
||
|
}
|
||
|
|
||
|
// extract solution to Ax = b
|
||
|
public double[] primal()
|
||
|
{
|
||
|
double[] x = new double[N];
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
if (Math.abs(a[i][i]) > EPSILON)
|
||
|
x[i] = a[i][N+N] / a[i][i];
|
||
|
else if (Math.abs(a[i][N+N]) > EPSILON)
|
||
|
return null;
|
||
|
}
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
// extract solution to yA = 0, yb != 0
|
||
|
public double[] dual()
|
||
|
{
|
||
|
double[] y = new double[N];
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
if ( (Math.abs(a[i][i]) <= EPSILON) && (Math.abs(a[i][N+N]) > EPSILON) )
|
||
|
{
|
||
|
for (int j = 0; j < N; j++)
|
||
|
y[j] = a[i][N+j];
|
||
|
return y;
|
||
|
}
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
// does the system have a solution?
|
||
|
public boolean isFeasible()
|
||
|
{
|
||
|
return primal() != null;
|
||
|
}
|
||
|
|
||
|
// print the tableaux
|
||
|
private void show()
|
||
|
{
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
System.out.print(" "+a[i][j]);
|
||
|
}
|
||
|
System.out.print("| ");
|
||
|
for (int j = N; j < N+N; j++)
|
||
|
{
|
||
|
System.out.print(" "+a[i][j]);
|
||
|
}
|
||
|
System.out.print("| \n"+a[i][N+N]);
|
||
|
}
|
||
|
System.out.println();
|
||
|
}
|
||
|
|
||
|
|
||
|
// check that Ax = b or yA = 0, yb != 0
|
||
|
private boolean check(double[][] A, double[] b)
|
||
|
{
|
||
|
// check that Ax = b
|
||
|
if (isFeasible())
|
||
|
{
|
||
|
double[] x = primal();
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
double sum = 0.0;
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
sum += A[i][j] * x[j];
|
||
|
}
|
||
|
if (Math.abs(sum - b[i]) > EPSILON)
|
||
|
{
|
||
|
System.out.println("not feasible");
|
||
|
System.out.println(i+" = "+b[i]+", sum = "+sum+"\n");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
// or that yA = 0, yb != 0
|
||
|
else
|
||
|
{
|
||
|
double[] y = dual();
|
||
|
for (int j = 0; j < N; j++)
|
||
|
{
|
||
|
double sum = 0.0;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
sum += A[i][j] * y[i];
|
||
|
}
|
||
|
if (Math.abs(sum) > EPSILON)
|
||
|
{
|
||
|
System.out.println("invalid certificate of infeasibility");
|
||
|
System.out.println("sum = "+sum+"\n");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
double sum = 0.0;
|
||
|
for (int i = 0; i < N; i++)
|
||
|
{
|
||
|
sum += y[i] * b[i];
|
||
|
}
|
||
|
if (Math.abs(sum) < EPSILON)
|
||
|
{
|
||
|
System.out.println("invalid certificate of infeasibility");
|
||
|
System.out.println("yb = "+sum+"\n");
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
public static void test(double[][] A, double[] b)
|
||
|
{
|
||
|
Gauss_Jordan_Elimination gaussian = new Gauss_Jordan_Elimination(A, b);
|
||
|
if (gaussian.isFeasible())
|
||
|
{
|
||
|
System.out.println("Solution to Ax = b");
|
||
|
double[] x = gaussian.primal();
|
||
|
for (int i = 0; i < x.length; i++)
|
||
|
{
|
||
|
System.out.println(" "+x[i]+"\n");
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
System.out.println("Certificate of infeasibility");
|
||
|
double[] y = gaussian.dual();
|
||
|
for (int j = 0; j < y.length; j++)
|
||
|
{
|
||
|
System.out.println(" "+y[j]+"\n");
|
||
|
}
|
||
|
}
|
||
|
System.out.println();
|
||
|
}
|
||
|
|
||
|
public static void main(String[] args)
|
||
|
{
|
||
|
Scanner input = new Scanner(System.in);
|
||
|
System.out.println("Enter the number of variables in the equations: ");
|
||
|
int n = input.nextInt();
|
||
|
System.out.println("Enter the coefficients of each variable for each equations");
|
||
|
System.out.println("ax + by + cz + ... = d");
|
||
|
double [][]mat = new double[n][n];
|
||
|
double []constants = new double[n];
|
||
|
//input
|
||
|
for(int i=0; i<n; i++)
|
||
|
{
|
||
|
for(int j=0; j<n; j++)
|
||
|
{
|
||
|
mat[i][j] = input.nextDouble();
|
||
|
}
|
||
|
constants[i] = input.nextDouble();
|
||
|
}
|
||
|
test(mat, constants);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Enter the number of variables in the equations:
|
||
|
2
|
||
|
Enter the coefficients of each variable for each equations
|
||
|
ax + by + cz + ... = d
|
||
|
1 2 3
|
||
|
6 5 4
|
||
|
Solution to Ax = b
|
||
|
-1.0
|
||
|
|
||
|
2.0
|
||
|
|
||
|
*/
|