programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement the Edmond’s Algorithm for Maximum Cardinality Matching.java

158 lines
5.4 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to implement Edmonds Algorithm for maximum cardinality matching. In graph theory, a branch of mathematics, Edmonds algorithm or ChuLiu/Edmonds algorithm is an algorithm for finding a maximum or minimum optimum branchings. This is similar to the minimum spanning tree problem which concerns undirected graphs. However, when nodes are connected by weighted edges that are directed, a minimum spanning tree algorithm cannot be used.*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
public class EdmondsMaximumCardinalityMatching
{
static int lca(int[] match, int[] base, int[] p, int a, int b)
{
boolean[] used = new boolean[match.length];
while (true)
{
a = base[a];
used[a] = true;
if (match[a] == -1)
break;
a = p[match[a]];
}
while (true)
{
b = base[b];
if (used[b])
return b;
b = p[match[b]];
}
}
static void markPath(int[] match, int[] base, boolean[] blossom, int[] p,
int v, int b, int children)
{
for (; base[v] != b; v = p[match[v]])
{
blossom[base[v]] = blossom[base[match[v]]] = true;
p[v] = children;
children = match[v];
}
}
static int findPath(List<Integer>[] graph, int[] match, int[] p, int root)
{
int n = graph.length;
boolean[] used = new boolean[n];
Arrays.fill(p, -1);
int[] base = new int[n];
for (int i = 0; i < n; ++i)
base[i] = i;
used[root] = true;
int qh = 0;
int qt = 0;
int[] q = new int[n];
q[qt++] = root;
while (qh < qt)
{
int v = q[qh++];
for (int to : graph[v])
{
if (base[v] == base[to] || match[v] == to)
continue;
if (to == root || match[to] != -1 && p[match[to]] != -1)
{
int curbase = lca(match, base, p, v, to);
boolean[] blossom = new boolean[n];
markPath(match, base, blossom, p, v, curbase, to);
markPath(match, base, blossom, p, to, curbase, v);
for (int i = 0; i < n; ++i)
if (blossom[base[i]])
{
base[i] = curbase;
if (!used[i])
{
used[i] = true;
q[qt++] = i;
}
}
}
else if (p[to] == -1)
{
p[to] = v;
if (match[to] == -1)
return to;
to = match[to];
used[to] = true;
q[qt++] = to;
}
}
}
return -1;
}
public static int maxMatching(List<Integer>[] graph)
{
int n = graph.length;
int[] match = new int[n];
Arrays.fill(match, -1);
int[] p = new int[n];
for (int i = 0; i < n; ++i)
{
if (match[i] == -1)
{
int v = findPath(graph, match, p, i);
while (v != -1)
{
int pv = p[v];
int ppv = match[pv];
match[v] = pv;
match[pv] = v;
v = ppv;
}
}
}
int matches = 0;
for (int i = 0; i < n; ++i)
if (match[i] != -1)
++matches;
return matches / 2;
}
@SuppressWarnings("unchecked")
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
int v = sc.nextInt();
System.out.println("Enter the number of edges: ");
int e = sc.nextInt();
List<Integer>[] g = new List[v];
for (int i = 0; i < v; i++)
{
g[i] = new ArrayList<Integer>();
}
System.out.println("Enter all the edges: <from> <to>");
for (int i = 0; i < e; i++)
{
g[sc.nextInt()].add(sc.nextInt());
}
System.out.println("Maximum matching for the given graph is: "
+ maxMatching(g));
sc.close();
}
}
/*
Enter the number of vertices:
6
Enter the number of edges:
7
Enter all the edges: <from> <to>
0 1
1 2
1 3
3 4
4 5
5 3
5 2
Maximum matching for the given graph is: 3