197 lines
7.0 KiB
Java
197 lines
7.0 KiB
Java
|
/*This Java program is to Implement Network Flow problem. In graph theory, a flow network (also known as a transportation network) is a directed graph where each edge has a capacity and each edge receives a flow. The amount of flow on an edge cannot exceed the capacity of the edge. Often in Operations Research, a directed graph is called a network, the vertices are called nodes and the edges are called arcs. A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, except when it is a source, which has more outgoing flow, or sink, which has more incoming flow. A network can be used to model traffic in a road system, fluids in pipes, currents in an electrical circuit, or anything similar in which something travels through a network of nodes.*/
|
||
|
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.HashSet;
|
||
|
import java.util.Iterator;
|
||
|
import java.util.LinkedList;
|
||
|
import java.util.Queue;
|
||
|
import java.util.Scanner;
|
||
|
import java.util.Set;
|
||
|
|
||
|
public class NetworkFlowProb
|
||
|
{
|
||
|
private int[] parent;
|
||
|
private Queue<Integer> queue;
|
||
|
private int numberOfVertices;
|
||
|
private boolean[] visited;
|
||
|
private Set<Pair> cutSet;
|
||
|
private ArrayList<Integer> reachable;
|
||
|
private ArrayList<Integer> unreachable;
|
||
|
|
||
|
public NetworkFlowProb (int numberOfVertices)
|
||
|
{
|
||
|
this.numberOfVertices = numberOfVertices;
|
||
|
this.queue = new LinkedList<Integer>();
|
||
|
parent = new int[numberOfVertices + 1];
|
||
|
visited = new boolean[numberOfVertices + 1];
|
||
|
cutSet = new HashSet<Pair>();
|
||
|
reachable = new ArrayList<Integer>();
|
||
|
unreachable = new ArrayList<Integer>();
|
||
|
}
|
||
|
|
||
|
public boolean bfs (int source, int goal, int graph[][])
|
||
|
{
|
||
|
boolean pathFound = false;
|
||
|
int destination, element;
|
||
|
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
|
||
|
{
|
||
|
parent[vertex] = -1;
|
||
|
visited[vertex] = false;
|
||
|
}
|
||
|
queue.add(source);
|
||
|
parent[source] = -1;
|
||
|
visited[source] = true;
|
||
|
while (!queue.isEmpty())
|
||
|
{
|
||
|
element = queue.remove();
|
||
|
destination = 1;
|
||
|
while (destination <= numberOfVertices)
|
||
|
{
|
||
|
if (graph[element][destination] > 0 && !visited[destination])
|
||
|
{
|
||
|
parent[destination] = element;
|
||
|
queue.add(destination);
|
||
|
visited[destination] = true;
|
||
|
}
|
||
|
destination++;
|
||
|
}
|
||
|
}
|
||
|
if (visited[goal])
|
||
|
{
|
||
|
pathFound = true;
|
||
|
}
|
||
|
return pathFound;
|
||
|
}
|
||
|
|
||
|
public int networkFlow (int graph[][], int source, int destination)
|
||
|
{
|
||
|
int u, v;
|
||
|
int maxFlow = 0;
|
||
|
int pathFlow;
|
||
|
int[][] residualGraph = new int[numberOfVertices + 1][numberOfVertices + 1];
|
||
|
for (int sourceVertex = 1; sourceVertex <= numberOfVertices; sourceVertex++)
|
||
|
{
|
||
|
for (int destinationVertex = 1; destinationVertex <= numberOfVertices; destinationVertex++)
|
||
|
{
|
||
|
residualGraph[sourceVertex][destinationVertex] = graph[sourceVertex][destinationVertex];
|
||
|
}
|
||
|
}
|
||
|
/*max flow*/
|
||
|
while (bfs(source, destination, residualGraph))
|
||
|
{
|
||
|
pathFlow = Integer.MAX_VALUE;
|
||
|
for (v = destination; v != source; v = parent[v])
|
||
|
{
|
||
|
u = parent[v];
|
||
|
pathFlow = Math.min(pathFlow, residualGraph[u][v]);
|
||
|
}
|
||
|
for (v = destination; v != source; v = parent[v])
|
||
|
{
|
||
|
u = parent[v];
|
||
|
residualGraph[u][v] -= pathFlow;
|
||
|
residualGraph[v][u] += pathFlow;
|
||
|
}
|
||
|
maxFlow += pathFlow;
|
||
|
}
|
||
|
/*calculate the cut set*/
|
||
|
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
|
||
|
{
|
||
|
if (bfs(source, vertex, residualGraph))
|
||
|
{
|
||
|
reachable.add(vertex);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
unreachable.add(vertex);
|
||
|
}
|
||
|
}
|
||
|
for (int i = 0; i < reachable.size(); i++)
|
||
|
{
|
||
|
for (int j = 0; j < unreachable.size(); j++)
|
||
|
{
|
||
|
if (graph[reachable.get(i)][unreachable.get(j)] > 0)
|
||
|
{
|
||
|
cutSet.add (new Pair(reachable.get(i), unreachable.get(j)));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return maxFlow;
|
||
|
}
|
||
|
|
||
|
public void printCutSet ()
|
||
|
{
|
||
|
Iterator<Pair> iterator = cutSet.iterator();
|
||
|
while (iterator.hasNext())
|
||
|
{
|
||
|
Pair pair = iterator.next();
|
||
|
System.out.println(pair.source + "-" + pair.destination);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void main (String...arg)
|
||
|
{
|
||
|
int[][] graph;
|
||
|
int numberOfNodes;
|
||
|
int source;
|
||
|
int sink;
|
||
|
int maxFlow;
|
||
|
Scanner scanner = new Scanner(System.in);
|
||
|
System.out.println("Enter the number of nodes");
|
||
|
numberOfNodes = scanner.nextInt();
|
||
|
graph = new int[numberOfNodes + 1][numberOfNodes + 1];
|
||
|
System.out.println("Enter the graph matrix");
|
||
|
for (int sourceVertex = 1; sourceVertex <= numberOfNodes; sourceVertex++)
|
||
|
{
|
||
|
for (int destinationVertex = 1; destinationVertex <= numberOfNodes; destinationVertex++)
|
||
|
{
|
||
|
graph[sourceVertex][destinationVertex] = scanner.nextInt();
|
||
|
}
|
||
|
}
|
||
|
System.out.println("Enter the source of the graph");
|
||
|
source= scanner.nextInt();
|
||
|
System.out.println("Enter the sink of the graph");
|
||
|
sink = scanner.nextInt();
|
||
|
NetworkFlowProb networkFlowProb = new NetworkFlowProb(numberOfNodes);
|
||
|
maxFlow = networkFlowProb.networkFlow(graph, source, sink);
|
||
|
System.out.println("The Max flow in the graph is " + maxFlow);
|
||
|
System.out.println("The Minimum Cut Set in the Graph is ");
|
||
|
networkFlowProb.printCutSet();
|
||
|
scanner.close();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class Pair
|
||
|
{
|
||
|
public int source;
|
||
|
public int destination;
|
||
|
|
||
|
public Pair(int source, int destination)
|
||
|
{
|
||
|
this.source = source;
|
||
|
this.destination = destination;
|
||
|
}
|
||
|
|
||
|
public Pair()
|
||
|
{
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Enter the number of nodes
|
||
|
6
|
||
|
Enter the graph matrix
|
||
|
0 16 13 0 0 0
|
||
|
0 0 10 12 0 0
|
||
|
0 4 0 0 14 0
|
||
|
0 0 9 0 0 20
|
||
|
0 0 0 7 0 4
|
||
|
0 0 0 0 0 0
|
||
|
Enter the source of the graph
|
||
|
1
|
||
|
Enter the sink of the graph
|
||
|
6
|
||
|
The Max flow in the graph is 23
|
||
|
The Minimum Cut Set in the Graph is
|
||
|
2-4
|
||
|
5-6
|
||
|
5-4
|