programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Johnson’s Algorithm.java

309 lines
12 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to Implement Johnsons algorithm. Johnsons algorithm is a way to find the shortest paths between all pairs of vertices in a sparse, edge weighted, directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may exist. It works by using the BellmanFord algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstras algorithm to be used on the transformed graph.*/
import java.util.InputMismatchException;
import java.util.Scanner;
public class JohnsonsAlgorithm
{
private int SOURCE_NODE;
private int numberOfNodes;
private int augmentedMatrix[][];
private int potential[];
private BellmanFord bellmanFord;
private DijkstraShortesPath dijsktraShortesPath;
private int[][] allPairShortestPath;
public static final int MAX_VALUE = 999;
public JohnsonsAlgorithm(int numberOfNodes)
{
this.numberOfNodes = numberOfNodes;
augmentedMatrix = new int[numberOfNodes + 2][numberOfNodes + 2];
SOURCE_NODE = numberOfNodes + 1;
potential = new int[numberOfNodes + 2];
bellmanFord = new BellmanFord(numberOfNodes + 1);
dijsktraShortesPath = new DijkstraShortesPath(numberOfNodes);
allPairShortestPath = new int[numberOfNodes + 1][numberOfNodes + 1];
}
public void johnsonsAlgorithms(int adjacencyMatrix[][])
{
computeAugmentedGraph(adjacencyMatrix);
bellmanFord.BellmanFordEvaluation(SOURCE_NODE, augmentedMatrix);
potential = bellmanFord.getDistances();
int reweightedGraph[][] = reweightGraph(adjacencyMatrix);
for (int i = 1; i <= numberOfNodes; i++)
{
for (int j = 1; j <= numberOfNodes; j++)
{
System.out.print(reweightedGraph[i][j] + "\t");
}
System.out.println();
}
for (int source = 1; source <= numberOfNodes; source++)
{
dijsktraShortesPath.dijkstraShortestPath(source, reweightedGraph);
int[] result = dijsktraShortesPath.getDistances();
for (int destination = 1; destination <= numberOfNodes; destination++)
{
allPairShortestPath[source][destination] = result[destination]
+ potential[destination] - potential[source];
}
}
System.out.println();
for (int i = 1; i<= numberOfNodes; i++)
{
System.out.print("\t"+i);
}
System.out.println();
for (int source = 1; source <= numberOfNodes; source++)
{
System.out.print( source +"\t" );
for (int destination = 1; destination <= numberOfNodes; destination++)
{
System.out.print(allPairShortestPath[source][destination]+ "\t");
}
System.out.println();
}
}
private void computeAugmentedGraph(int adjacencyMatrix[][])
{
for (int source = 1; source <= numberOfNodes; source++)
{
for (int destination = 1; destination <= numberOfNodes; destination++)
{
augmentedMatrix[source][destination] = adjacencyMatrix[source][destination];
}
}
for (int destination = 1; destination <= numberOfNodes; destination++)
{
augmentedMatrix[SOURCE_NODE][destination] = 0;
}
}
private int[][] reweightGraph(int adjacencyMatrix[][])
{
int[][] result = new int[numberOfNodes + 1][numberOfNodes + 1];
for (int source = 1; source <= numberOfNodes; source++)
{
for (int destination = 1; destination <= numberOfNodes; destination++)
{
result[source][destination] = adjacencyMatrix[source][destination]
+ potential[source] - potential[destination];
}
}
return result;
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
JohnsonsAlgorithm johnsonsAlgorithm = new JohnsonsAlgorithm(number_of_vertices);
johnsonsAlgorithm.johnsonsAlgorithms(adjacency_matrix);
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class BellmanFord
{
private int distances[];
private int numberofvertices;
public static final int MAX_VALUE = 999;
public BellmanFord(int numberofvertices)
{
this.numberofvertices = numberofvertices;
distances = new int[numberofvertices + 1];
}
public void BellmanFordEvaluation(int source, int adjacencymatrix[][])
{
for (int node = 1; node <= numberofvertices; node++)
{
distances[node] = MAX_VALUE;
}
distances[source] = 0;
for (int node = 1; node <= numberofvertices - 1; node++)
{
for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++)
{
for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++)
{
if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE)
{
if (distances[destinationnode] > distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode])
{
distances[destinationnode] = distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode];
}
}
}
}
}
for (int sourcenode = 1; sourcenode <= numberofvertices; sourcenode++)
{
for (int destinationnode = 1; destinationnode <= numberofvertices; destinationnode++)
{
if (adjacencymatrix[sourcenode][destinationnode] != MAX_VALUE)
{
if (distances[destinationnode] > distances[sourcenode]
+ adjacencymatrix[sourcenode][destinationnode])
System.out.println("The Graph contains negative egde cycle");
}
}
}
}
public int[] getDistances()
{
return distances;
}
}
class DijkstraShortesPath
{
private boolean settled[];
private boolean unsettled[];
private int distances[];
private int adjacencymatrix[][];
private int numberofvertices;
public static final int MAX_VALUE = 999;
public DijkstraShortesPath(int numberofvertices)
{
this.numberofvertices = numberofvertices;
}
public void dijkstraShortestPath(int source, int adjacencymatrix[][])
{
this.settled = new boolean[numberofvertices + 1];
this.unsettled = new boolean[numberofvertices + 1];
this.distances = new int[numberofvertices + 1];
this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1];
int evaluationnode;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
distances[vertex] = MAX_VALUE;
}
for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
{
this.adjacencymatrix[sourcevertex][destinationvertex]
= adjacencymatrix[sourcevertex][destinationvertex];
}
}
unsettled[source] = true;
distances[source] = 0;
while (getUnsettledCount(unsettled) != 0)
{
evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled);
unsettled[evaluationnode] = false;
settled[evaluationnode] = true;
evaluateNeighbours(evaluationnode);
}
}
public int getUnsettledCount(boolean unsettled[])
{
int count = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true)
{
count++;
}
}
return count;
}
public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[])
{
int min = MAX_VALUE;
int node = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true && distances[vertex] < min)
{
node = vertex;
min = distances[vertex];
}
}
return node;
}
public void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++)
{
if (settled[destinationNode] == false)
{
if (adjacencymatrix[evaluationNode][destinationNode] != MAX_VALUE)
{
edgeDistance = adjacencymatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
unsettled[destinationNode] = true;
}
}
}
}
public int[] getDistances()
{
return distances;
}
}
/*
Enter the number of vertices
4
Enter the Weighted Matrix for the graph
0 0 3 0
2 0 0 0
0 7 0 1
6 0 0 0
All pair shortest path is
1 2 3 4
1 0 10 3 4
2 2 0 5 6
3 7 7 0 1
4 6 16 9 0