programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Hamiltonian Cycle Algorithm.java

120 lines
3.7 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a Java Program to Implement Hamiltonian Cycle Algorithm. Hamiltonian cycle is a path in a graph that visits each vertex exactly once and back to starting vertex. This program is to determine if a given graph is a hamiltonian cycle or not. This program assumes every vertex of the graph to be a part of hamiltonian path.*/
/**
** Java Program to Implement Hamiltonian Cycle Algorithm
**/
import java.util.Scanner;
import java.util.Arrays;
/** Class HamiltonianCycle **/
public class HamiltonianCycle
{
private int V, pathCount;
private int[] path;
private int[][] graph;
/** Function to find cycle **/
public void findHamiltonianCycle(int[][] g)
{
V = g.length;
path = new int[V];
Arrays.fill(path, -1);
graph = g;
try
{
path[0] = 0;
pathCount = 1;
solve(0);
System.out.println("No solution");
}
catch (Exception e)
{
System.out.println(e.getMessage());
display();
}
}
/** function to find paths recursively **/
public void solve(int vertex) throws Exception
{
/** solution **/
if (graph[vertex][0] == 1 && pathCount == V)
throw new Exception("Solution found");
/** all vertices selected but last vertex not linked to 0 **/
if (pathCount == V)
return;
for (int v = 0; v < V; v++)
{
/** if connected **/
if (graph[vertex][v] == 1 )
{
/** add to path **/
path[pathCount++] = v;
/** remove connection **/
graph[vertex][v] = 0;
graph[v][vertex] = 0;
/** if vertex not already selected solve recursively **/
if (!isPresent(v))
solve(v);
/** restore connection **/
graph[vertex][v] = 1;
graph[v][vertex] = 1;
/** remove path **/
path[--pathCount] = -1;
}
}
}
/** function to check if path is already selected **/
public boolean isPresent(int v)
{
for (int i = 0; i < pathCount - 1; i++)
if (path[i] == v)
return true;
return false;
}
/** display solution **/
public void display()
{
System.out.print("\nPath : ");
for (int i = 0; i <= V; i++)
System.out.print(path[i % V] +" ");
System.out.println();
}
/** Main function **/
public static void main (String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("HamiltonianCycle Algorithm Test\n");
/** Make an object of HamiltonianCycle class **/
HamiltonianCycle hc = new HamiltonianCycle();
/** Accept number of vertices **/
System.out.println("Enter number of vertices\n");
int V = scan.nextInt();
/** get graph **/
System.out.println("\nEnter matrix\n");
int[][] graph = new int[V][V];
for (int i = 0; i < V; i++)
for (int j = 0; j < V; j++)
graph[i][j] = scan.nextInt();
hc.findHamiltonianCycle(graph);
}
}
/*
Enter number of vertices
8
Enter matrix
0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 1 0 1 0
Solution found
Path : 0 1 2 3 7 6 5 4 0