programming-examples/java/Graph_Problems_Algorithms/Java Program to Find Shortest Path Between All Vertices Using Floyd-Warshall’s Algorithm.java

105 lines
4.6 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This is a java program to find shortest path between all vertices using FLoyd-Warshalls algorithm. In computer science, the FloydWarshall algorithm (also known as Floyds algorithm, RoyWarshall algorithm, RoyFloyd algorithm, or the WFI algorithm) is a graph analysis algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles, see below) and also for finding transitive closure of a relation R. A single execution of the algorithm will find the lengths (summed weights) of the shortest paths between all pairs of vertices, though it does not return details of the paths themselves.*/
import java.util.Scanner;
public class FloydWarshallShortestPath
{
private int distancematrix[][];
private int numberofvertices;
public static final int INFINITY = 999;
public FloydWarshallShortestPath(int numberofvertices)
{
distancematrix = new int[numberofvertices + 1][numberofvertices + 1];
this.numberofvertices = numberofvertices;
}
public void floydwarshall(int adjacencymatrix[][])
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
distancematrix[source][destination] = adjacencymatrix[source][destination];
}
}
for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
if (distancematrix[source][intermediate]
+ distancematrix[intermediate][destination] < distancematrix[source][destination])
distancematrix[source][destination] = distancematrix[source][intermediate]
+ distancematrix[intermediate][destination];
}
}
}
for (int source = 1; source <= numberofvertices; source++)
System.out.print("\t" + source);
System.out.println();
for (int source = 1; source <= numberofvertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberofvertices; destination++)
{
System.out.print(distancematrix[source][destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int numberofvertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
numberofvertices = scan.nextInt();
adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
adjacency_matrix[source][destination] = scan.nextInt();
if (source == destination)
{
adjacency_matrix[source][destination] = 0;
continue;
}
if (adjacency_matrix[source][destination] == 0)
{
adjacency_matrix[source][destination] = INFINITY;
}
}
}
System.out.println("The Transitive Closure of the Graph");
FloydWarshallShortestPath floydwarshall = new FloydWarshallShortestPath(
numberofvertices);
floydwarshall.floydwarshall(adjacency_matrix);
scan.close();
}
}
/*
Enter the number of vertices
6
Enter the Weighted Matrix for the graph
0 4 0 0 1 0
0 0 1 0 2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 5 0 3
0 0 0 0 0 0
The Transitive Closure of the Graph (999 represents not reachable)
1 2 3 4 5 6
1 0 4 5 6 1 4
2 999 0 1 7 2 5
3 999 999 0 999 999 999
4 999 999 999 0 999 999
5 999 999 999 5 0 3
6 999 999 999 999 999 0