programming-examples/java/Graph_Problems_Algorithms/Java Program to Check whether Graph is a Bipartite using DFS.java

116 lines
4.4 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to check whether graph is bipartite using dfs. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets and such that every edge connects a vertex in to one in that is, and are each independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.*/
import java.util.InputMismatchException;
import java.util.Scanner;
import java.util.Stack;
public class BipartiteDfs
{
private int numberOfVertices;
private Stack<Integer> stack;
public static final int NO_COLOR = 0;
public static final int RED = 1;
public static final int BLUE = 2;
public BipartiteDfs(int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
stack = new Stack<Integer>();
}
public boolean isBipartite(int adjacencyMartix[][], int source)
{
int[] colored = new int[numberOfVertices + 1];
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
{
colored[vertex] = NO_COLOR;
}
stack.push(source);
colored[source] = RED;
int element = source;
int neighbours = source;
while (!stack.empty())
{
element = stack.peek();
neighbours = element;
while (neighbours <= numberOfVertices)
{
if (adjacencyMartix[element][neighbours] == 1&& colored[neighbours] == colored[element])
{
return false;
}
if (adjacencyMartix[element][neighbours] == 1 && colored[neighbours] == NO_COLOR)
{
colored[neighbours] = (colored[element] == RED) ? BLUE : RED;
stack.push(neighbours);
element = neighbours;
neighbours = 1;
continue;
}
neighbours++;
}
stack.pop();
}
return true;
}
public static void main(String... arg)
{
int number_of_nodes, source;
Scanner scanner = null;
try
{
System.out.println("Enter the number of nodes in the graph");
scanner = new Scanner(System.in);
number_of_nodes = scanner.nextInt();
int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
System.out.println("Enter the adjacency matrix");
for (int i = 1; i <= number_of_nodes; i++)
{
for (int j = 1; j <= number_of_nodes; j++)
{
adjacency_matrix[i][j] = scanner.nextInt();
}
}
for (int i = 1; i <= number_of_nodes; i++)
{
for (int j = 1; j <= number_of_nodes; j++)
{
if (adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
{
adjacency_matrix[j][i] = 1;
}
}
}
System.out.println("Enter the source for the graph");
source = scanner.nextInt();
BipartiteDfs bipartiteDfs = new BipartiteDfs(number_of_nodes);
if (bipartiteDfs.isBipartite(adjacency_matrix, source))
{
System.out.println("The given graph is bipartite");
}
else
{
System.out.println("The given graph is not bipartite");
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input format");
}
scanner.close();
}
}
/*
Enter the number of nodes in the graph
4
Enter the adjacency matrix
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0
Enter the source for the graph
1
The given graph is bipartite