166 lines
5.0 KiB
Java
166 lines
5.0 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.StdIn;
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac QuickX.java
|
||
|
* Execution: java QuickX N
|
||
|
*
|
||
|
* Uses the Bentley-McIlroy 3-way partitioning scheme,
|
||
|
* chooses the partitioning element using Tukey's ninther,
|
||
|
* and cuts off to insertion sort.
|
||
|
*
|
||
|
* Reference: Engineering a Sort Function by Jon L. Bentley
|
||
|
* and M. Douglas McIlroy. Softwae-Practice and Experience,
|
||
|
* Vol. 23 (11), 1249-1265 (November 1993).
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* The QuickX class provides static methods for sorting an
|
||
|
* array using an optimized version of quicksort (using Bentley-McIlroy
|
||
|
* 3-way partitioning, Tukey's ninther, and cutoff to insertion sort).
|
||
|
*
|
||
|
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/21elementary">Section 2.1</a> of
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class QuickX {
|
||
|
private static final int CUTOFF = 8; // cutoff to insertion sort, must be >= 1
|
||
|
|
||
|
// This class should not be instantiated.
|
||
|
private QuickX() { }
|
||
|
|
||
|
/**
|
||
|
* Rearranges the array in ascending order, using the natural order.
|
||
|
* @param a the array to be sorted
|
||
|
*/
|
||
|
public static void sort(Comparable[] a) {
|
||
|
sort(a, 0, a.length - 1);
|
||
|
}
|
||
|
|
||
|
private static void sort(Comparable[] a, int lo, int hi) {
|
||
|
int N = hi - lo + 1;
|
||
|
|
||
|
// cutoff to insertion sort
|
||
|
if (N <= CUTOFF) {
|
||
|
insertionSort(a, lo, hi);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// use median-of-3 as partitioning element
|
||
|
else if (N <= 40) {
|
||
|
int m = median3(a, lo, lo + N/2, hi);
|
||
|
exch(a, m, lo);
|
||
|
}
|
||
|
|
||
|
// use Tukey ninther as partitioning element
|
||
|
else {
|
||
|
int eps = N/8;
|
||
|
int mid = lo + N/2;
|
||
|
int m1 = median3(a, lo, lo + eps, lo + eps + eps);
|
||
|
int m2 = median3(a, mid - eps, mid, mid + eps);
|
||
|
int m3 = median3(a, hi - eps - eps, hi - eps, hi);
|
||
|
int ninther = median3(a, m1, m2, m3);
|
||
|
exch(a, ninther, lo);
|
||
|
}
|
||
|
|
||
|
// Bentley-McIlroy 3-way partitioning
|
||
|
int i = lo, j = hi+1;
|
||
|
int p = lo, q = hi+1;
|
||
|
Comparable v = a[lo];
|
||
|
while (true) {
|
||
|
while (less(a[++i], v))
|
||
|
if (i == hi) break;
|
||
|
while (less(v, a[--j]))
|
||
|
if (j == lo) break;
|
||
|
|
||
|
// pointers cross
|
||
|
if (i == j && eq(a[i], v))
|
||
|
exch(a, ++p, i);
|
||
|
if (i >= j) break;
|
||
|
|
||
|
exch(a, i, j);
|
||
|
if (eq(a[i], v)) exch(a, ++p, i);
|
||
|
if (eq(a[j], v)) exch(a, --q, j);
|
||
|
}
|
||
|
|
||
|
|
||
|
i = j + 1;
|
||
|
for (int k = lo; k <= p; k++) exch(a, k, j--);
|
||
|
for (int k = hi; k >= q; k--) exch(a, k, i++);
|
||
|
|
||
|
sort(a, lo, j);
|
||
|
sort(a, i, hi);
|
||
|
}
|
||
|
|
||
|
|
||
|
// sort from a[lo] to a[hi] using insertion sort
|
||
|
private static void insertionSort(Comparable[] a, int lo, int hi) {
|
||
|
for (int i = lo; i <= hi; i++)
|
||
|
for (int j = i; j > lo && less(a[j], a[j-1]); j--)
|
||
|
exch(a, j, j-1);
|
||
|
}
|
||
|
|
||
|
|
||
|
// return the index of the median element among a[i], a[j], and a[k]
|
||
|
private static int median3(Comparable[] a, int i, int j, int k) {
|
||
|
return (less(a[i], a[j]) ?
|
||
|
(less(a[j], a[k]) ? j : less(a[i], a[k]) ? k : i) :
|
||
|
(less(a[k], a[j]) ? j : less(a[k], a[i]) ? k : i));
|
||
|
}
|
||
|
|
||
|
/***********************************************************************
|
||
|
* Helper sorting functions
|
||
|
***********************************************************************/
|
||
|
|
||
|
// is v < w ?
|
||
|
private static boolean less(Comparable v, Comparable w) {
|
||
|
return (v.compareTo(w) < 0);
|
||
|
}
|
||
|
|
||
|
// does v == w ?
|
||
|
private static boolean eq(Comparable v, Comparable w) {
|
||
|
return (v.compareTo(w) == 0);
|
||
|
}
|
||
|
|
||
|
// exchange a[i] and a[j]
|
||
|
private static void exch(Object[] a, int i, int j) {
|
||
|
Object swap = a[i];
|
||
|
a[i] = a[j];
|
||
|
a[j] = swap;
|
||
|
}
|
||
|
|
||
|
|
||
|
/***********************************************************************
|
||
|
* Check if array is sorted - useful for debugging
|
||
|
***********************************************************************/
|
||
|
private static boolean isSorted(Comparable[] a) {
|
||
|
for (int i = 1; i < a.length; i++)
|
||
|
if (less(a[i], a[i-1])) return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// print array to standard output
|
||
|
private static void show(Comparable[] a) {
|
||
|
for (int i = 0; i < a.length; i++) {
|
||
|
StdOut.println(a[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reads in a sequence of strings from standard input; quicksorts them
|
||
|
* (using an optimized version of quicksort);
|
||
|
* and prints them to standard output in ascending order.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
String[] a = StdIn.readAllStrings();
|
||
|
QuickX.sort(a);
|
||
|
show(a);
|
||
|
}
|
||
|
|
||
|
}
|