166 lines
4.5 KiB
Java
166 lines
4.5 KiB
Java
|
import javax.swing.*;
|
|||
|
import java.awt.*;
|
|||
|
import java.util.Random;
|
|||
|
|
|||
|
// https://en.wikipedia.org/wiki/Lin–Kernighan_heuristic
|
|||
|
public class LinKernighan2 extends JFrame {
|
|||
|
Random rnd = new Random(1);
|
|||
|
int n = rnd.nextInt(300) + 250;
|
|||
|
|
|||
|
double[] x = new double[n];
|
|||
|
double[] y = new double[n];
|
|||
|
int[] bestState;
|
|||
|
double bestDist = Double.POSITIVE_INFINITY;
|
|||
|
|
|||
|
{
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
x[i] = rnd.nextDouble();
|
|||
|
y[i] = rnd.nextDouble();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public void linKernighan() {
|
|||
|
int[] curState = optimize(getRandomPermutation(n));
|
|||
|
double curDist = eval(curState);
|
|||
|
updateBest(curState, curDist);
|
|||
|
for (boolean improved = true; improved; ) {
|
|||
|
improved = false;
|
|||
|
for (int rev = -1; rev <= 1; rev += 2) {
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
int[] p = new int[n];
|
|||
|
for (int j = 0; j < n; j++)
|
|||
|
p[j] = curState[(i + rev * j + n) % n];
|
|||
|
boolean[][] added = new boolean[n][n];
|
|||
|
double cost = eval(p);
|
|||
|
double delta = -dist(x[p[n - 1]], y[p[n - 1]], x[p[0]], y[p[0]]);
|
|||
|
for (int k = 0; k < n; k++) {
|
|||
|
double best = Double.POSITIVE_INFINITY;
|
|||
|
int bestPos = -1;
|
|||
|
for (int j = 1; j < n - 2; j++) {
|
|||
|
if (added[p[j]][p[j + 1]])
|
|||
|
continue;
|
|||
|
double addedEdge = dist(x[p[n - 1]], y[p[n - 1]], x[p[j]], y[p[j]]);
|
|||
|
if (delta + addedEdge > 0)
|
|||
|
continue;
|
|||
|
double removedEdge = dist(x[p[j]], y[p[j]], x[p[j + 1]], y[p[j + 1]]);
|
|||
|
double cur = addedEdge - removedEdge;
|
|||
|
if (best > cur) {
|
|||
|
best = cur;
|
|||
|
bestPos = j;
|
|||
|
}
|
|||
|
}
|
|||
|
if (bestPos == -1)
|
|||
|
break;
|
|||
|
added[p[n - 1]][p[bestPos]] = true;
|
|||
|
added[p[bestPos]][p[n - 1]] = true;
|
|||
|
delta += best;
|
|||
|
reverse(p, bestPos + 1, n - 1);
|
|||
|
double closingEdge = dist(x[p[n - 1]], y[p[n - 1]], x[p[0]], y[p[0]]);
|
|||
|
if (curDist > cost + delta + closingEdge) {
|
|||
|
curDist = cost + delta + closingEdge;
|
|||
|
curState = p.clone();
|
|||
|
updateBest(curState, curDist);
|
|||
|
improved = true;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
updateBest(curState, curDist);
|
|||
|
}
|
|||
|
|
|||
|
void updateBest(int[] curState, double curDist) {
|
|||
|
if (bestDist > curDist) {
|
|||
|
bestDist = curDist;
|
|||
|
bestState = curState.clone();
|
|||
|
repaint();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// reverse order from i to j
|
|||
|
static void reverse(int[] p, int i, int j) {
|
|||
|
int n = p.length;
|
|||
|
while (i != j) {
|
|||
|
int t = p[j];
|
|||
|
p[j] = p[i];
|
|||
|
p[i] = t;
|
|||
|
i = (i + 1) % n;
|
|||
|
if (i == j) break;
|
|||
|
j = (j - 1 + n) % n;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
double eval(int[] state) {
|
|||
|
double res = 0;
|
|||
|
for (int i = 0, j = state.length - 1; i < state.length; j = i++)
|
|||
|
res += dist(x[state[i]], y[state[i]], x[state[j]], y[state[j]]);
|
|||
|
return res;
|
|||
|
}
|
|||
|
|
|||
|
static double dist(double x1, double y1, double x2, double y2) {
|
|||
|
double dx = x1 - x2;
|
|||
|
double dy = y1 - y2;
|
|||
|
return Math.sqrt(dx * dx + dy * dy);
|
|||
|
}
|
|||
|
|
|||
|
int[] getRandomPermutation(int n) {
|
|||
|
int[] res = new int[n];
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
int j = rnd.nextInt(i + 1);
|
|||
|
res[i] = res[j];
|
|||
|
res[j] = i;
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
|
|||
|
int[] optimize(int[] p) {
|
|||
|
int[] res = p.clone();
|
|||
|
for (boolean improved = true; improved; ) {
|
|||
|
improved = false;
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
for (int j = 0; j < n; j++) {
|
|||
|
if (i == j || (j + 1) % n == i) continue;
|
|||
|
int i1 = (i - 1 + n) % n;
|
|||
|
int j1 = (j + 1) % n;
|
|||
|
double delta = dist(x[res[i1]], y[res[i1]], x[res[j]], y[res[j]])
|
|||
|
+ dist(x[res[i]], y[res[i]], x[res[j1]], y[res[j1]])
|
|||
|
- dist(x[res[i1]], y[res[i1]], x[res[i]], y[res[i]])
|
|||
|
- dist(x[res[j]], y[res[j]], x[res[j1]], y[res[j1]]);
|
|||
|
if (delta < -1e-9) {
|
|||
|
reverse(res, i, j);
|
|||
|
improved = true;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return res;
|
|||
|
}
|
|||
|
|
|||
|
// visualization code
|
|||
|
public LinKernighan2() {
|
|||
|
setContentPane(new JPanel() {
|
|||
|
protected void paintComponent(Graphics g) {
|
|||
|
super.paintComponent(g);
|
|||
|
if (bestState == null) return;
|
|||
|
((Graphics2D) g).setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
|
|||
|
((Graphics2D) g).setStroke(new BasicStroke(3));
|
|||
|
int w = getWidth() - 5;
|
|||
|
int h = getHeight() - 30;
|
|||
|
for (int i = 0, j = n - 1; i < n; j = i++)
|
|||
|
g.drawLine((int) (x[bestState[i]] * w), (int) ((1 - y[bestState[i]]) * h),
|
|||
|
(int) (x[bestState[j]] * w), (int) ((1 - y[bestState[j]]) * h));
|
|||
|
g.drawString(String.format("length: %.3f", eval(bestState)), 5, h + 20);
|
|||
|
}
|
|||
|
});
|
|||
|
setSize(new Dimension(600, 600));
|
|||
|
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
|
|||
|
setVisible(true);
|
|||
|
new Thread(this::linKernighan).start();
|
|||
|
}
|
|||
|
|
|||
|
public static void main(String[] args) {
|
|||
|
new LinKernighan2();
|
|||
|
}
|
|||
|
}
|