122 lines
2.9 KiB
Java
122 lines
2.9 KiB
Java
|
import java.util.Random;
|
||
|
|
||
|
public class KdTreePointQuery {
|
||
|
|
||
|
int[] x;
|
||
|
int[] y;
|
||
|
|
||
|
public KdTreePointQuery(int[] x, int[] y) {
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
build(0, x.length, true);
|
||
|
}
|
||
|
|
||
|
void build(int low, int high, boolean divX) {
|
||
|
if (high - low <= 1)
|
||
|
return;
|
||
|
int mid = (low + high) >>> 1;
|
||
|
nth_element(low, high, mid, divX);
|
||
|
|
||
|
build(low, mid, !divX);
|
||
|
build(mid + 1, high, !divX);
|
||
|
}
|
||
|
|
||
|
static final Random rnd = new Random(1);
|
||
|
|
||
|
// See http://www.cplusplus.com/reference/algorithm/nth_element
|
||
|
void nth_element(int low, int high, int n, boolean divX) {
|
||
|
while (true) {
|
||
|
int k = partition(low, high, low + rnd.nextInt(high - low), divX);
|
||
|
if (n < k)
|
||
|
high = k;
|
||
|
else if (n > k)
|
||
|
low = k + 1;
|
||
|
else
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int partition(int fromInclusive, int toExclusive, int separatorIndex, boolean divX) {
|
||
|
int i = fromInclusive;
|
||
|
int j = toExclusive - 1;
|
||
|
if (i >= j) return j;
|
||
|
int separator = divX ? x[separatorIndex] : y[separatorIndex];
|
||
|
swap(i++, separatorIndex);
|
||
|
while (i <= j) {
|
||
|
while (i <= j && (divX ? x[i] : y[i]) < separator)
|
||
|
++i;
|
||
|
while (i <= j && (divX ? x[j] : y[j]) > separator)
|
||
|
--j;
|
||
|
if (i >= j)
|
||
|
break;
|
||
|
swap(i++, j--);
|
||
|
}
|
||
|
swap(j, fromInclusive);
|
||
|
return j;
|
||
|
}
|
||
|
|
||
|
void swap(int i, int j) {
|
||
|
int t = x[i];
|
||
|
x[i] = x[j];
|
||
|
x[j] = t;
|
||
|
t = y[i];
|
||
|
y[i] = y[j];
|
||
|
y[j] = t;
|
||
|
}
|
||
|
|
||
|
long bestDist;
|
||
|
int bestNode;
|
||
|
|
||
|
public int findNearestNeighbour(int px, int py) {
|
||
|
bestDist = Long.MAX_VALUE;
|
||
|
findNearestNeighbour(0, x.length, px, py, true);
|
||
|
return bestNode;
|
||
|
}
|
||
|
|
||
|
void findNearestNeighbour(int low, int high, int px, int py, boolean divX) {
|
||
|
if (high - low <= 0)
|
||
|
return;
|
||
|
int mid = (low + high) >>> 1;
|
||
|
long dx = px - x[mid];
|
||
|
long dy = py - y[mid];
|
||
|
long dist = dx * dx + dy * dy;
|
||
|
if (bestDist > dist) {
|
||
|
bestDist = dist;
|
||
|
bestNode = mid;
|
||
|
}
|
||
|
long delta = divX ? dx : dy;
|
||
|
long delta2 = delta * delta;
|
||
|
|
||
|
if (delta <= 0) {
|
||
|
findNearestNeighbour(low, mid, px, py, !divX);
|
||
|
if (delta2 < bestDist)
|
||
|
findNearestNeighbour(mid + 1, high, px, py, !divX);
|
||
|
} else {
|
||
|
findNearestNeighbour(mid + 1, high, px, py, !divX);
|
||
|
if (delta2 < bestDist)
|
||
|
findNearestNeighbour(low, mid, px, py, !divX);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// random test
|
||
|
public static void main(String[] args) {
|
||
|
for (int step = 0; step < 100_000; step++) {
|
||
|
int qx = rnd.nextInt(100) - 50;
|
||
|
int qy = rnd.nextInt(100) - 50;
|
||
|
int n = rnd.nextInt(100) + 1;
|
||
|
int[] x = new int[n];
|
||
|
int[] y = new int[n];
|
||
|
long minDist = Long.MAX_VALUE;
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
x[i] = rnd.nextInt(100) - 50;
|
||
|
y[i] = rnd.nextInt(100) - 50;
|
||
|
minDist = Math.min(minDist, (long) (x[i] - qx) * (x[i] - qx) + (long) (y[i] - qy) * (y[i] - qy));
|
||
|
}
|
||
|
KdTreePointQuery kdTree = new KdTreePointQuery(x, y);
|
||
|
int index = kdTree.findNearestNeighbour(qx, qy);
|
||
|
if (minDist != kdTree.bestDist || (long) (x[index] - qx) * (x[index] - qx) + (long) (y[index] - qy) * (y[index] - qy) != minDist)
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
}
|
||
|
}
|