programming-examples/java/Data_Structures/Java Program to Implement Segment Tree.java

116 lines
4.1 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to Implement Segment tree. In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.*/
public class SegmentTree
{
private int[] tree;
private int maxsize;
private int height;
private final int STARTINDEX = 0;
private final int ENDINDEX;
private final int ROOT = 0;
public SegmentTree(int size)
{
height = (int)(Math.ceil(Math.log(size) / Math.log(2)));
maxsize = 2 * (int) Math.pow(2, height) - 1;
tree = new int[maxsize];
ENDINDEX = size - 1;
}
private int leftchild(int pos)
{
return 2 * pos + 1;
}
private int rightchild(int pos)
{
return 2 * pos + 2;
}
private int mid(int start, int end)
{
return (start + (end - start) / 2);
}
private int getSumUtil(int startIndex, int endIndex, int queryStart, int queryEnd, int current)
{
if (queryStart <= startIndex && queryEnd >= endIndex )
{
return tree[current];
}
if (endIndex < queryStart || startIndex > queryEnd)
{
return 0;
}
int mid = mid(startIndex, endIndex);
return getSumUtil(startIndex, mid, queryStart, queryEnd, leftchild(current))
+ getSumUtil( mid + 1, endIndex, queryStart, queryEnd, rightchild(current));
}
public int getSum(int queryStart, int queryEnd)
{
if(queryStart < 0 || queryEnd > tree.length)
{
return -1;
}
return getSumUtil(STARTINDEX, ENDINDEX, queryStart, queryEnd, ROOT);
}
private int constructSegmentTreeUtil(int[] elements, int startIndex, int endIndex, int current)
{
if (startIndex == endIndex)
{
tree[current] = elements[startIndex];
return tree[current];
}
int mid = mid(startIndex, endIndex);
tree[current] = constructSegmentTreeUtil(elements, startIndex, mid, leftchild(current))
+ constructSegmentTreeUtil(elements, mid + 1, endIndex, rightchild(current));
return tree[current];
}
public void constructSegmentTree(int[] elements)
{
constructSegmentTreeUtil(elements, STARTINDEX, ENDINDEX, ROOT);
}
private void updateTreeUtil(int startIndex, int endIndex, int updatePos, int update, int current)
{
if ( updatePos < startIndex || updatePos > endIndex)
{
return;
}
tree[current] = tree[current] + update;
if (startIndex != endIndex)
{
int mid = mid(startIndex, endIndex);
updateTreeUtil(startIndex, mid, updatePos, update, leftchild(current));
updateTreeUtil(mid+1, endIndex, updatePos, update, rightchild(current));
}
}
public void update(int update, int updatePos, int[] elements)
{
int updatediff = update - elements[updatePos] ;
elements[updatePos] = update;
updateTreeUtil(STARTINDEX, ENDINDEX, updatePos, updatediff, ROOT);
}
public static void main(String...arg)
{
int[] elements = {1,3,5,7,9,11};
SegmentTree segmentTree = new SegmentTree(6);
segmentTree.constructSegmentTree(elements);
int num = segmentTree.getSum(1, 5);
System.out.println("the num is " + num);
segmentTree.update(10, 5,elements);
num = segmentTree.getSum(1, 5);
System.out.println("the num is " + num);
}
}
/*
the sum is 35
the sum is 34