135 lines
3.7 KiB
Java
135 lines
3.7 KiB
Java
|
/*This Java program is to implement Min heap. A Heap data structure is a Tree based data structure that satisfies the HEAP Property “If A is a parent node of B then key(A) is ordered with respect to key(B) with the same ordering applying across the heap.”
|
||
|
So in a Min Heap this property will be “If A is a parent node of B then key(A) is less than key(B) with the same ordering applying across the heap.” and in a max heap the key(A) will be greater than Key(B).*/
|
||
|
|
||
|
public class MinHeap
|
||
|
{
|
||
|
private int[] Heap;
|
||
|
private int size;
|
||
|
private int maxsize;
|
||
|
|
||
|
private static final int FRONT = 1;
|
||
|
|
||
|
public MinHeap(int maxsize)
|
||
|
{
|
||
|
this.maxsize = maxsize;
|
||
|
this.size = 0;
|
||
|
Heap = new int[this.maxsize + 1];
|
||
|
Heap[0] = Integer.MIN_VALUE;
|
||
|
}
|
||
|
|
||
|
private int parent(int pos)
|
||
|
{
|
||
|
return pos / 2;
|
||
|
}
|
||
|
|
||
|
private int leftChild(int pos)
|
||
|
{
|
||
|
return (2 * pos);
|
||
|
}
|
||
|
|
||
|
private int rightChild(int pos)
|
||
|
{
|
||
|
return (2 * pos) + 1;
|
||
|
}
|
||
|
|
||
|
private boolean isLeaf(int pos)
|
||
|
{
|
||
|
if (pos >= (size / 2) && pos <= size)
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
private void swap(int fpos, int spos)
|
||
|
{
|
||
|
int tmp;
|
||
|
tmp = Heap[fpos];
|
||
|
Heap[fpos] = Heap[spos];
|
||
|
Heap[spos] = tmp;
|
||
|
}
|
||
|
|
||
|
private void minHeapify(int pos)
|
||
|
{
|
||
|
if (!isLeaf(pos))
|
||
|
{
|
||
|
if ( Heap[pos] > Heap[leftChild(pos)] || Heap[pos] > Heap[rightChild(pos)])
|
||
|
{
|
||
|
if (Heap[leftChild(pos)] < Heap[rightChild(pos)])
|
||
|
{
|
||
|
swap(pos, leftChild(pos));
|
||
|
minHeapify(leftChild(pos));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
swap(pos, rightChild(pos));
|
||
|
minHeapify(rightChild(pos));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public void insert(int element)
|
||
|
{
|
||
|
Heap[++size] = element;
|
||
|
int current = size;
|
||
|
while (Heap[current] < Heap[parent(current)])
|
||
|
{
|
||
|
swap(current,parent(current));
|
||
|
current = parent(current);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public void print()
|
||
|
{
|
||
|
for (int i = 1; i <= size / 2; i++ )
|
||
|
{
|
||
|
System.out.print(" PARENT : " + Heap[i] + " LEFT CHILD : " + Heap[2*i]
|
||
|
+ " RIGHT CHILD :" + Heap[2 * i + 1]);
|
||
|
System.out.println();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public void minHeap()
|
||
|
{
|
||
|
for (int pos = (size / 2); pos >= 1 ; pos--)
|
||
|
{
|
||
|
minHeapify(pos);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public int remove()
|
||
|
{
|
||
|
int popped = Heap[FRONT];
|
||
|
Heap[FRONT] = Heap[size--];
|
||
|
minHeapify(FRONT);
|
||
|
return popped;
|
||
|
}
|
||
|
|
||
|
public static void main(String...arg)
|
||
|
{
|
||
|
System.out.println("The Min Heap is ");
|
||
|
MinHeap minHeap = new MinHeap(15);
|
||
|
minHeap.insert(5);
|
||
|
minHeap.insert(3);
|
||
|
minHeap.insert(17);
|
||
|
minHeap.insert(10);
|
||
|
minHeap.insert(84);
|
||
|
minHeap.insert(19);
|
||
|
minHeap.insert(6);
|
||
|
minHeap.insert(22);
|
||
|
minHeap.insert(9);
|
||
|
minHeap.minHeap();
|
||
|
minHeap.print();
|
||
|
System.out.println("The Min val is " + minHeap.remove());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
The Min Heap is
|
||
|
PARENT : 3 LEFT CHILD : 5 RIGHT CHILD :6
|
||
|
PARENT : 5 LEFT CHILD : 9 RIGHT CHILD :84
|
||
|
PARENT : 6 LEFT CHILD : 19 RIGHT CHILD :17
|
||
|
PARENT : 9 LEFT CHILD : 22 RIGHT CHILD :10
|
||
|
The Min val is 3
|