131 lines
3.2 KiB
Java
131 lines
3.2 KiB
Java
|
import java.math.BigInteger;
|
||
|
import java.util.Random;
|
||
|
|
||
|
public class IFFT {
|
||
|
|
||
|
static int pow(int x, int n, int mod) {
|
||
|
int res = 1;
|
||
|
for (long p = x; n > 0; n >>= 1, p = (p * p) % mod) {
|
||
|
if ((n & 1) != 0) {
|
||
|
res = (int) (res * p % mod);
|
||
|
}
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
// a.length == b.length == 2^x
|
||
|
public static void fft(int[] a, boolean invert, int mod, int root) {
|
||
|
final int root_inv = pow(root, mod - 2, mod);
|
||
|
final int root_pw = 1 << 20;
|
||
|
|
||
|
int n = a.length;
|
||
|
int shift = 32 - Integer.numberOfTrailingZeros(n);
|
||
|
for (int i = 1; i < n; i++) {
|
||
|
int j = Integer.reverse(i << shift);
|
||
|
if (i < j) {
|
||
|
int temp = a[i];
|
||
|
a[i] = a[j];
|
||
|
a[j] = temp;
|
||
|
}
|
||
|
}
|
||
|
for (int len = 2; len <= n; len <<= 1) {
|
||
|
int wlen = invert ? root_inv : root;
|
||
|
for (int i = len; i < root_pw; i <<= 1)
|
||
|
wlen = (int) ((long) wlen * wlen % mod);
|
||
|
for (int i = 0; i < n; i += len) {
|
||
|
int w = 1;
|
||
|
for (int j = 0; j < len / 2; ++j) {
|
||
|
int u = a[i + j];
|
||
|
int v = (int) ((long) a[i + j + len / 2] * w % mod);
|
||
|
a[i + j] = (u + v) % mod;
|
||
|
a[i + j + len / 2] = (u - v + mod) % mod;
|
||
|
w = (int) ((long) w * wlen % mod);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (invert) {
|
||
|
int nrev = pow(n, mod - 2, mod);
|
||
|
for (int i = 0; i < n; ++i)
|
||
|
a[i] = (int) ((long) a[i] * nrev % mod);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static int[] multiply(int[] a, int[] b) {
|
||
|
int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2;
|
||
|
resultSize = Math.max(resultSize, 2);
|
||
|
int[] aReal = new int[resultSize];
|
||
|
int[] bReal = new int[resultSize];
|
||
|
for (int i = 0; i < a.length; i++)
|
||
|
aReal[i] = a[i];
|
||
|
for (int i = 0; i < b.length; i++)
|
||
|
bReal[i] = b[i];
|
||
|
|
||
|
final int mod = 913 * (1 << 20) + 1;
|
||
|
final int root = 23;
|
||
|
// final int mod = 918 * (1 << 20) + 1;
|
||
|
// final int root = 106;
|
||
|
// final int mod = 997 * (1 << 20) + 1;
|
||
|
// final int root = 363;
|
||
|
|
||
|
fft(aReal, false, mod, root);
|
||
|
fft(bReal, false, mod, root);
|
||
|
for (int i = 0; i < resultSize; i++) {
|
||
|
aReal[i] = (int) (((long) aReal[i] * bReal[i]) % mod);
|
||
|
}
|
||
|
fft(aReal, true, mod, root);
|
||
|
long carry = 0;
|
||
|
for (int i = 0; i < resultSize; i++) {
|
||
|
aReal[i] += carry;
|
||
|
carry = aReal[i] / 10;
|
||
|
aReal[i] %= 10;
|
||
|
}
|
||
|
return aReal;
|
||
|
}
|
||
|
|
||
|
// random test
|
||
|
public static void main(String[] args) {
|
||
|
Random rnd = new Random(1);
|
||
|
for (int step = 0; step < 1000; step++) {
|
||
|
int n1 = rnd.nextInt(10) + 1;
|
||
|
String s1 = "";
|
||
|
int[] a = new int[n1];
|
||
|
for (int i = 0; i < n1; i++) {
|
||
|
int x = rnd.nextInt(10);
|
||
|
s1 = x + s1;
|
||
|
a[i] = x;
|
||
|
}
|
||
|
int n2 = rnd.nextInt(10) + 1;
|
||
|
String s2 = "";
|
||
|
int[] b = new int[n2];
|
||
|
for (int i = 0; i < n2; i++) {
|
||
|
int x = rnd.nextInt(10);
|
||
|
s2 = x + s2;
|
||
|
b[i] = x;
|
||
|
}
|
||
|
int[] res = multiply(a, b);
|
||
|
String s = "";
|
||
|
for (long v : res) {
|
||
|
s = v + s;
|
||
|
}
|
||
|
BigInteger mul = new BigInteger(s1).multiply(new BigInteger(s2));
|
||
|
if (!mul.equals(new BigInteger(s)))
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
|
||
|
generatePrimitiveRoots(1 << 20);
|
||
|
}
|
||
|
|
||
|
static void generatePrimitiveRoots(int N) {
|
||
|
for (int i = 900; i < 1000; i++) {
|
||
|
int mod = N * i + 1;
|
||
|
if (!BigInteger.valueOf(mod).isProbablePrime(100)) continue;
|
||
|
for (int root = 2; root < 10_00; root++) {
|
||
|
if (pow(root, N, mod) == 1 && pow(root, N / 2, mod) != 1) {
|
||
|
System.out.println(i + " " + mod + " " + root);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|