programming-examples/java/Data_Structures/BinomialCoefficients.java

60 lines
1.4 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
import java.math.BigInteger;
public class BinomialCoefficients {
public static long[][] binomialTable(int n) {
long[][] c = new long[n + 1][n + 1];
for (int i = 0; i <= n; i++)
for (int j = 0; j <= i; j++)
c[i][j] = (j == 0) ? 1 : c[i - 1][j - 1] + c[i - 1][j];
return c;
}
public static long binomial(long n, long m) {
m = Math.min(m, n - m);
long res = 1;
for (long i = 0; i < m; i++) {
res = res * (n - i) / (i + 1);
}
return res;
}
// for (int i = 1; i < f.length; i++) f[i] = f[i - 1] + Math.log(i);
public static double binomial(int n, int m, double[] f) {
if (m < 0 || m > n) return 0;
return Math.exp(f[n] - f[m] - f[n - m]);
}
// n! % mod
public static int factorial(int n, int mod) {
long res = 1;
for (int i = 2; i <= n; i++)
res = res * i % mod;
return (int) (res % mod);
}
// n! mod p, p - prime, O(p*log(n)) complexity
public static int factorial2(int n, int p) {
int res = 1;
while (n > 1) {
res = (res * ((n / p) % 2 == 1 ? p - 1 : 1)) % p;
for (int i = 2; i <= n % p; ++i)
res = (res * i) % p;
n /= p;
}
return res % p;
}
public static int binomial(int n, int m, int mod) {
m = Math.min(m, n - m);
long res = 1;
for (int i = n - m + 1; i <= n; i++)
res = res * i % mod;
return (int) (res * BigInteger.valueOf(factorial(m, mod)).modInverse(BigInteger.valueOf(mod)).intValue() % mod);
}
// Usage example
public static void main(String[] args) {
}
}