programming-examples/java/Data_Structures/AssignmentProblem.java

214 lines
6.5 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac AssignmentProblem.java
* Execution: java AssignmentProblem N
* Dependencies: DijkstraSP.java DirectedEdge.java
*
* Solve an N-by-N assignment problem in N^3 log N time using the
* successive shortest path algorithm.
*
* Remark: could use dense version of Dijsktra's algorithm for
* improved theoretical efficiency of N^3, but it doesn't seem to
* help in practice.
*
* Assumes N-by-N cost matrix is nonnegative.
*
*
*********************************************************************/
public class AssignmentProblem {
private static final int UNMATCHED = -1;
private int N; // number of rows and columns
private double[][] weight; // the N-by-N cost matrix
private double[] px; // px[i] = dual variable for row i
private double[] py; // py[j] = dual variable for col j
private int[] xy; // xy[i] = j means i-j is a match
private int[] yx; // yx[j] = i means i-j is a match
public AssignmentProblem(double[][] weight) {
N = weight.length;
this.weight = new double[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
this.weight[i][j] = weight[i][j];
// dual variables
px = new double[N];
py = new double[N];
// initial matching is empty
xy = new int[N];
yx = new int[N];
for (int i = 0; i < N; i++) xy[i] = UNMATCHED;
for (int j = 0; j < N; j++) yx[j] = UNMATCHED;
// add N edges to matching
for (int k = 0; k < N; k++) {
assert isDualFeasible();
assert isComplementarySlack();
augment();
}
assert check();
}
// find shortest augmenting path and upate
private void augment() {
// build residual graph
EdgeWeightedDigraph G = new EdgeWeightedDigraph(2*N+2);
int s = 2*N, t = 2*N+1;
for (int i = 0; i < N; i++) {
if (xy[i] == UNMATCHED) G.addEdge(new DirectedEdge(s, i, 0.0));
}
for (int j = 0; j < N; j++) {
if (yx[j] == UNMATCHED) G.addEdge(new DirectedEdge(N+j, t, py[j]));
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (xy[i] == j) G.addEdge(new DirectedEdge(N+j, i, 0.0));
else G.addEdge(new DirectedEdge(i, N+j, reduced(i, j)));
}
}
// compute shortest path from s to every other vertex
DijkstraSP spt = new DijkstraSP(G, s);
// augment along alternating path
for (DirectedEdge e : spt.pathTo(t)) {
int i = e.from(), j = e.to() - N;
if (i < N) {
xy[i] = j;
yx[j] = i;
}
}
// update dual variables
for (int i = 0; i < N; i++) px[i] += spt.distTo(i);
for (int j = 0; j < N; j++) py[j] += spt.distTo(N+j);
}
// reduced cost of i-j
private double reduced(int i, int j) {
return weight[i][j] + px[i] - py[j];
}
// dual variable for row i
public double dualRow(int i) {
return px[i];
}
// dual variable for column j
public double dualCol(int j) {
return py[j];
}
// total weight of min weight perfect matching
public double weight() {
double total = 0.0;
for (int i = 0; i < N; i++) {
if (xy[i] != UNMATCHED)
total += weight[i][xy[i]];
}
return total;
}
public int sol(int i) {
return xy[i];
}
// check that dual variables are feasible
private boolean isDualFeasible() {
// check that all edges have >= 0 reduced cost
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (reduced(i, j) < 0) {
StdOut.println("Dual variables are not feasible");
return false;
}
}
}
return true;
}
// check that primal and dual variables are complementary slack
private boolean isComplementarySlack() {
// check that all matched edges have 0-reduced cost
for (int i = 0; i < N; i++) {
if ((xy[i] != UNMATCHED) && (reduced(i, xy[i]) != 0)) {
StdOut.println("Primal and dual variables are not complementary slack");
return false;
}
}
return true;
}
// check that primal variables are a perfect matching
private boolean isPerfectMatching() {
// check that xy[] is a perfect matching
boolean[] perm = new boolean[N];
for (int i = 0; i < N; i++) {
if (perm[xy[i]]) {
StdOut.println("Not a perfect matching");
return false;
}
perm[xy[i]] = true;
}
// check that xy[] and yx[] are inverses
for (int j = 0; j < N; j++) {
if (xy[yx[j]] != j) {
StdOut.println("xy[] and yx[] are not inverses");
return false;
}
}
for (int i = 0; i < N; i++) {
if (yx[xy[i]] != i) {
StdOut.println("xy[] and yx[] are not inverses");
return false;
}
}
return true;
}
// check optimality conditions
private boolean check() {
return isPerfectMatching() && isDualFeasible() && isComplementarySlack();
}
public static void main(String[] args) {
In in = new In(args[0]);
int N = in.readInt();
double[][] weight = new double[N][N];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
weight[i][j] = in.readDouble();
}
}
AssignmentProblem assignment = new AssignmentProblem(weight);
StdOut.println("weight = " + assignment.weight());
for (int i = 0; i < N; i++)
StdOut.println(i + "-" + assignment.sol(i) + "' " + weight[i][assignment.sol(i)]);
for (int i = 0; i < N; i++)
StdOut.println("px[" + i + "] = " + assignment.dualRow(i));
for (int j = 0; j < N; j++)
StdOut.println("py[" + j + "] = " + assignment.dualCol(j));
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
StdOut.println("reduced[" + i + "-" + j + "] = " + assignment.reduced(i, j));
}
}