26 lines
862 B
R
26 lines
862 B
R
|
# Goal: Show the efficiency of the mean when compared with the median
|
||
|
# using a large simulation where both estimators are applied on
|
||
|
# a sample of U(0,1) uniformly distributed random numbers.
|
||
|
|
||
|
one.simulation <- function(N=100) { # N defaults to 100 if not supplied
|
||
|
x <- runif(N)
|
||
|
return(c(mean(x), median(x)))
|
||
|
}
|
||
|
|
||
|
# Simulation --
|
||
|
results <- replicate(100000, one.simulation(20)) # Gives back a 2x100000 matrix
|
||
|
|
||
|
# Two kernel densities --
|
||
|
k1 <- density(results[1,]) # results[1,] is the 1st row
|
||
|
k2 <- density(results[2,])
|
||
|
|
||
|
# A pretty picture --
|
||
|
xrange <- range(k1$x, k2$x)
|
||
|
plot(k1$x, k1$y, xlim=xrange, type="l", xlab="Estimated value", ylab="")
|
||
|
grid()
|
||
|
lines(k2$x, k2$y, col="red")
|
||
|
abline(v=.5)
|
||
|
legend(x="topleft", bty="n",
|
||
|
lty=c(1,1),
|
||
|
col=c("black", "red"),
|
||
|
legend=c("Mean", "Median"))
|