programming-examples/c++/Basic/FFT.cpp

137 lines
3.3 KiB
C++
Raw Normal View History

2019-11-18 14:44:36 +01:00
// https://web.stanford.edu/~liszt90/acm/notebook.html#file16
// Fast Fourier Transform : Used in many applications(one is fast polynomial multiplication)
#include <cassert>
#include <cstdio>
#include <cmath>
struct cpx
{
cpx(){}
cpx(double aa):a(aa),b(0){}
cpx(double aa, double bb):a(aa),b(bb){}
double a;
double b;
double modsq(void) const
{
return a * a + b * b;
}
cpx bar(void) const
{
return cpx(a, -b);
}
};
cpx operator +(cpx a, cpx b)
{
return cpx(a.a + b.a, a.b + b.b);
}
cpx operator *(cpx a, cpx b)
{
return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
}
cpx operator /(cpx a, cpx b)
{
cpx r = a * b.bar();
return cpx(r.a / b.modsq(), r.b / b.modsq());
}
cpx EXP(double theta)
{
return cpx(cos(theta),sin(theta));
}
const double two_pi = 4 * acos(0);
// in: input array
// out: output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum_{j=0}^{size - 1} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
{
if(size < 1) return;
if(size == 1)
{
out[0] = in[0];
return;
}
FFT(in, out, step * 2, size / 2, dir);
FFT(in + step, out + size / 2, step * 2, size / 2, dir);
for(int i = 0 ; i < size / 2 ; i++)
{
cpx even = out[i];
cpx odd = out[i + size / 2];
out[i] = even + EXP(dir * two_pi * i / size) * odd;
out[i + size / 2] = even + EXP(dir * two_pi * (i + size / 2) / size) * odd;
}
}
// Usage:
// f[0...N-1] and g[0..N-1] are numbers
// Want to compute the convolution h, defined by
// h[n] = sum of f[k]g[n-k] (k = 0, ..., N-1).
// Here, the index is cyclic; f[-1] = f[N-1], f[-2] = f[N-2], etc.
// Let F[0...N-1] be FFT(f), and similarly, define G and H.
// The convolution theorem says H[n] = F[n]G[n] (element-wise product).
// To compute h[] in O(N log N) time, do the following:
// 1. Compute F and G (pass dir = 1 as the argument).
// 2. Get H by element-wise multiplying F and G.
// 3. Get h by taking the inverse FFT (use dir = -1 as the argument)
// and *dividing by N*. DO NOT FORGET THIS SCALING FACTOR.
int main(void)
{
printf("If rows come in identical pairs, then everything works.\n");
cpx a[8] = {0, 1, cpx(1,3), cpx(0,5), 1, 0, 2, 0};
cpx b[8] = {1, cpx(0,-2), cpx(0,1), 3, -1, -3, 1, -2};
cpx A[8];
cpx B[8];
FFT(a, A, 1, 8, 1);
FFT(b, B, 1, 8, 1);
for(int i = 0 ; i < 8 ; i++)
{
printf("%7.2lf%7.2lf", A[i].a, A[i].b);
}
printf("\n");
for(int i = 0 ; i < 8 ; i++)
{
cpx Ai(0,0);
for(int j = 0 ; j < 8 ; j++)
{
Ai = Ai + a[j] * EXP(j * i * two_pi / 8);
}
printf("%7.2lf%7.2lf", Ai.a, Ai.b);
}
printf("\n");
cpx AB[8];
for(int i = 0 ; i < 8 ; i++)
AB[i] = A[i] * B[i];
cpx aconvb[8];
FFT(AB, aconvb, 1, 8, -1);
for(int i = 0 ; i < 8 ; i++)
aconvb[i] = aconvb[i] / 8;
for(int i = 0 ; i < 8 ; i++)
{
printf("%7.2lf%7.2lf", aconvb[i].a, aconvb[i].b);
}
printf("\n");
for(int i = 0 ; i < 8 ; i++)
{
cpx aconvbi(0,0);
for(int j = 0 ; j < 8 ; j++)
{
aconvbi = aconvbi + a[j] * b[(8 + i - j) % 8];
}
printf("%7.2lf%7.2lf", aconvbi.a, aconvbi.b);
}
printf("\n");
return 0;
}