328 lines
14 KiB
Java
328 lines
14 KiB
Java
|
import java.io.BufferedReader;
|
||
|
import java.io.FileReader;
|
||
|
import java.io.IOException;
|
||
|
import java.util.StringTokenizer;
|
||
|
|
||
|
public class TSPUsingMST
|
||
|
{
|
||
|
// ArraysC to keep track of info. related to each city
|
||
|
private String[] cityName;
|
||
|
private String[] cityState;
|
||
|
private int[] cityLat;
|
||
|
private int[] cityLong;
|
||
|
private int[] cityPop;
|
||
|
// 2-D array to keep track of pairwise distances between cities
|
||
|
private int[][] distances;
|
||
|
// number of cities
|
||
|
private static int numCities;
|
||
|
|
||
|
public TSPUsingMST(int n)
|
||
|
{
|
||
|
numCities = n;
|
||
|
// Allotting the space for each 1-D array
|
||
|
cityName = new String[numCities];
|
||
|
cityState = new String[numCities];
|
||
|
cityLat = new int[numCities];
|
||
|
cityLong = new int[numCities];
|
||
|
cityPop = new int[numCities];
|
||
|
// Allocate space for each 2-D array. These arrays have 0 elements in
|
||
|
// row 0,
|
||
|
// 1 element in row 1, 2 elements in row 2, etc.
|
||
|
distances = new int[numCities][];
|
||
|
for (int i = 0; i < numCities; i++)
|
||
|
distances[i] = new int[i];
|
||
|
try
|
||
|
{
|
||
|
// Construct a buffered reader object and connect it to the files
|
||
|
// "miles.dat"
|
||
|
BufferedReader in = new BufferedReader(new FileReader("miles.dat"));
|
||
|
// A counter that keeps track of the index of the current city being
|
||
|
// read
|
||
|
int cityNumber = 0;
|
||
|
// While-loop for reading in data from "miles.dat." At the beginning
|
||
|
// of the while-loop
|
||
|
// the expectation is that we'll be reading a line containing the
|
||
|
// city name. Instead,
|
||
|
// if we encounter a line that starts with "*" then we skip to the
|
||
|
// next line
|
||
|
while (cityNumber < numCities)
|
||
|
{
|
||
|
// Read in a line
|
||
|
String line = in.readLine();
|
||
|
// Skip the rest of the loop if line starts with a "*"
|
||
|
if (line.charAt(0) == '*')
|
||
|
continue;
|
||
|
// Otherwise tokenize the line
|
||
|
StringTokenizer tokenizedLine = new StringTokenizer(line, ",[]");
|
||
|
// Putting actual data into correct position in the array
|
||
|
cityName[cityNumber] = tokenizedLine.nextToken();
|
||
|
cityState[cityNumber] = (tokenizedLine.nextToken()).trim(); // trim()
|
||
|
// gets
|
||
|
// rid
|
||
|
// of
|
||
|
// leading/trailing
|
||
|
// blanks
|
||
|
cityLat[cityNumber] = Integer.parseInt(tokenizedLine
|
||
|
.nextToken());
|
||
|
cityLong[cityNumber] = Integer.parseInt(tokenizedLine
|
||
|
.nextToken());
|
||
|
cityPop[cityNumber] = Integer.parseInt(tokenizedLine
|
||
|
.nextToken());
|
||
|
// while loop to put distances in the array; this may need to
|
||
|
// read several lines
|
||
|
int mileNumber = 0;
|
||
|
while (mileNumber < cityNumber)
|
||
|
{
|
||
|
// Read a mileage line and tokenize it
|
||
|
String mileage = in.readLine();
|
||
|
StringTokenizer tokenizedMileage = new StringTokenizer(
|
||
|
mileage, " ");
|
||
|
// Read all the mileage data in this line into row
|
||
|
// cityNumber; increment
|
||
|
// mileNumber after each read
|
||
|
while (tokenizedMileage.hasMoreTokens())
|
||
|
{
|
||
|
distances[cityNumber][cityNumber - mileNumber - 1] = Integer
|
||
|
.parseInt(tokenizedMileage.nextToken());
|
||
|
mileNumber++;
|
||
|
}
|
||
|
} // end of while reading distances
|
||
|
cityNumber++;
|
||
|
} // end of while reading cities
|
||
|
in.close();
|
||
|
} // end of try
|
||
|
catch (IOException e)
|
||
|
{
|
||
|
System.out.println("File not found.");
|
||
|
}
|
||
|
} // end of TSPTester() constructor
|
||
|
|
||
|
// A simple getIndex method to help test the constructor
|
||
|
int getIndex(String city, String state)
|
||
|
{
|
||
|
int location;
|
||
|
for (location = 0; location < numCities; location++)
|
||
|
if ((cityName[location].equals(city))
|
||
|
&& (cityState[location].equals(state)))
|
||
|
return location;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Print information about a city, given a city index
|
||
|
void printCityInfo(int index)
|
||
|
{
|
||
|
System.out
|
||
|
.println(cityName[index] + " " + cityState[index] + " "
|
||
|
+ cityLat[index] + " " + cityLong[index] + " "
|
||
|
+ cityPop[index]);
|
||
|
}
|
||
|
|
||
|
// Print distance information between a given pair of cities
|
||
|
void printDistanceInfo(int i, int j)
|
||
|
{
|
||
|
if (i < j)
|
||
|
System.out.println(distances[j][i]);
|
||
|
else
|
||
|
System.out.println(distances[i][j]);
|
||
|
}
|
||
|
|
||
|
int getDistance(int i, int j)
|
||
|
{
|
||
|
if (i < j)
|
||
|
return distances[j][i];
|
||
|
else if (j < i)
|
||
|
return distances[i][j];
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int[] greedyTSP()
|
||
|
{
|
||
|
// Find a cheapest triangle
|
||
|
// Load triangle 0-1-2 into the the first 3 slots of the greedy array
|
||
|
int[] greedy = new int[numCities];
|
||
|
int currentDistance;
|
||
|
greedy[0] = 0;
|
||
|
greedy[1] = 1;
|
||
|
greedy[2] = 2;
|
||
|
int currentBestDistance = getDistance(0, 1) + getDistance(1, 2)
|
||
|
+ getDistance(2, 0);
|
||
|
for (int i = 0; i < numCities; i++)
|
||
|
for (int j = 0; j < i; j++)
|
||
|
for (int k = 0; k < j; k++)
|
||
|
if ((currentDistance = getDistance(i, j)
|
||
|
+ getDistance(j, k) + getDistance(i, k)) < currentBestDistance)
|
||
|
{
|
||
|
greedy[0] = i;
|
||
|
greedy[1] = j;
|
||
|
greedy[2] = k;
|
||
|
currentBestDistance = currentDistance;
|
||
|
}
|
||
|
// Try greedily to add a city that yields the smallest increase
|
||
|
// in the cost of the tour
|
||
|
int partialTourSize = 3;
|
||
|
boolean[] visited = new boolean[numCities];
|
||
|
for (int i = 0; i < numCities; i++)
|
||
|
visited[i] = false;
|
||
|
visited[greedy[0]] = true;
|
||
|
visited[greedy[1]] = true;
|
||
|
visited[greedy[2]] = true;
|
||
|
// Main loop: keep repeating until partial tour covers all cities
|
||
|
while (partialTourSize < numCities)
|
||
|
{
|
||
|
int smallestIncrease = Integer.MAX_VALUE;
|
||
|
int increase = 0;
|
||
|
int bestInsertionPoint = 0;
|
||
|
int bestCity = 0;
|
||
|
// Scan through all cities, stopping at unvisited cities
|
||
|
for (int i = 0; i < numCities; i++)
|
||
|
{
|
||
|
if (!visited[i])
|
||
|
{
|
||
|
// Consider all possible positions of inserting city i into
|
||
|
// the tour
|
||
|
// and record the smallest increase
|
||
|
for (int j = 0; j < partialTourSize; j++)
|
||
|
{
|
||
|
increase = getDistance(greedy[j], i)
|
||
|
+ getDistance(i, greedy[(j + 1) % numCities])
|
||
|
- getDistance(greedy[j], greedy[(j + 1)
|
||
|
% numCities]);
|
||
|
if (increase < smallestIncrease)
|
||
|
{
|
||
|
smallestIncrease = increase;
|
||
|
bestCity = i;
|
||
|
bestInsertionPoint = j;
|
||
|
} // end of if we have found a smaller increase
|
||
|
} // end of for-j
|
||
|
} // end of if not visited
|
||
|
} // end of for-i
|
||
|
// Now we are ready to insert the bestCity at the bestInsertionPoint
|
||
|
for (int j = partialTourSize - 1; j > bestInsertionPoint; j--)
|
||
|
greedy[j + 1] = greedy[j];
|
||
|
greedy[bestInsertionPoint + 1] = bestCity;
|
||
|
visited[bestCity] = true;
|
||
|
partialTourSize++;
|
||
|
} // end-while
|
||
|
return greedy;
|
||
|
}
|
||
|
|
||
|
void copy(int[] source, int[] dest)
|
||
|
{
|
||
|
for (int i = 0; i < dest.length; i++)
|
||
|
dest[i] = source[i];
|
||
|
}
|
||
|
|
||
|
void TSP(int[] R, int partialTourSize, boolean[] visited, int[] T)
|
||
|
{
|
||
|
// Base case: we have discovered a tour better than T
|
||
|
if ((partialTourSize == numCities) && (cost(R) < cost(T)))
|
||
|
{
|
||
|
System.out.println("Base case. Tour cost is " + cost(R));
|
||
|
copy(R, T);
|
||
|
return;
|
||
|
}
|
||
|
// Another base case: our partial tour is not worth completing
|
||
|
if (cost(R, partialTourSize) >= cost(T))
|
||
|
return;
|
||
|
// Recursive case: R is not complete and is currently better than T
|
||
|
// and is therefore worth completing
|
||
|
for (int i = 0; i < numCities; i++)
|
||
|
{
|
||
|
if (!visited[i])
|
||
|
{
|
||
|
// System.out.println("Appending " + i);
|
||
|
visited[i] = true;
|
||
|
R[partialTourSize++] = i;
|
||
|
TSP(R, partialTourSize, visited, T);
|
||
|
partialTourSize--;
|
||
|
visited[i] = false;
|
||
|
// System.out.println("Deleting " + i);
|
||
|
}
|
||
|
} // end of for-loop
|
||
|
} // end of TSP
|
||
|
|
||
|
double cost(int[] tour)
|
||
|
{
|
||
|
return cost(tour, tour.length);
|
||
|
}
|
||
|
|
||
|
double cost(int[] tour, int tourSize)
|
||
|
{
|
||
|
double c = 0;
|
||
|
for (int i = 0; i < tourSize - 1; i++)
|
||
|
c = c + getDistance(tour[i], tour[i + 1]);
|
||
|
c = c + getDistance(tour[tourSize - 1], tour[0]);
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
// Main method
|
||
|
public static void main(String[] args)
|
||
|
{
|
||
|
int n = 15;
|
||
|
TSPUsingMST T = new TSPUsingMST(n);
|
||
|
// Initialize the list of vertices in the tree
|
||
|
// Initially, no one except vertex 0 is in the tree
|
||
|
boolean[] visited = new boolean[n];
|
||
|
for (int i = 0; i < n; i++)
|
||
|
visited[i] = false;
|
||
|
visited[0] = true;
|
||
|
// Initialize the int[] that maintains the tree to default values
|
||
|
// No vertices have parents set, except vertex 0 whose parent is itself
|
||
|
int[] tree = new int[n];
|
||
|
for (int i = 0; i < n; i++)
|
||
|
tree[i] = -1;
|
||
|
tree[0] = 0;
|
||
|
for (int i = 1; i <= n - 1; i++)
|
||
|
{
|
||
|
long minWeight = Long.MAX_VALUE;
|
||
|
int bestVertex = -1;
|
||
|
int bestParent = -1;
|
||
|
for (int j = 0; j < n; j++)
|
||
|
{
|
||
|
for (int k = 0; k < n; k++)
|
||
|
{
|
||
|
if ((visited[j]) && (!visited[k]))
|
||
|
{
|
||
|
if (T.getDistance(j, k) < minWeight)
|
||
|
{
|
||
|
minWeight = T.getDistance(j, k);
|
||
|
bestVertex = k;
|
||
|
bestParent = j;
|
||
|
} // end if better distance is found
|
||
|
} // end if an edge between a visited and an unvisited is
|
||
|
// found
|
||
|
} // end for-k
|
||
|
} // end for-j
|
||
|
// Update visited and tree
|
||
|
visited[bestVertex] = true;
|
||
|
tree[bestVertex] = bestParent;
|
||
|
} // end for-i
|
||
|
// Printing the MST
|
||
|
for (int i = 1; i < n; i++)
|
||
|
System.out.println(T.cityName[i] + " " + T.cityState[i] + ", "
|
||
|
+ T.cityName[tree[i]] + " " + T.cityState[tree[i]]);
|
||
|
// Compting the MST cost
|
||
|
long cost = 0;
|
||
|
for (int i = 0; i < n; i++)
|
||
|
cost += T.getDistance(i, tree[i]);
|
||
|
System.out.println("The cost of the minimum spanning tree is " + cost);
|
||
|
} // end main method
|
||
|
} // end class
|
||
|
|
||
|
/*
|
||
|
Yankton SD, Wisconsin Dells WI
|
||
|
Yakima WA, Williston ND
|
||
|
Worcester MA, Wilmington DE
|
||
|
Wisconsin Dells WI, Youngstown OH
|
||
|
Winston-Salem NC, Winchester VA
|
||
|
Winnipeg MB, Yankton SD
|
||
|
Winchester VA, Wilmington DE
|
||
|
Wilmington NC, Winston-Salem NC
|
||
|
Wilmington DE, Williamsport PA
|
||
|
Williston ND, Winnipeg MB
|
||
|
Williamsport PA, Youngstown OH
|
||
|
Williamson WV, Winston-Salem NC
|
||
|
Wichita Falls TX, Wichita KS
|
||
|
Wichita KS, Yankton SD
|
||
|
The cost of the minimum spanning tree is 5461
|