programming-examples/java/Graph_Problems_Algorithms/Java Program to Find Transitive Closure of a Graph.java

101 lines
4.1 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program is to find the transitive closure of a graph.Given a directed graph, find out if a vertex j is reachable from another vertex i for all vertex pairs (i, j) in the given graph. Here reachable mean that there is a path from vertex i to j. The reach-ability matrix is called transitive closure of a graph.*/
import java.util.Scanner;
public class TransitiveClosure
{
private int transitiveMatrix[][];
private int numberofvertices;
public static final int INFINITY = 999;
public TransitiveClosure(int numberofvertices)
{
transitiveMatrix= new int[numberofvertices + 1][numberofvertices + 1];
this.numberofvertices = numberofvertices;
}
public void transitiveClosure(int adjacencymatrix[][])
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
transitiveMatrix[source][destination] = adjacencymatrix[source][destination];
}
}
for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
{
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
if (transitiveMatrix[source][intermediate] + transitiveMatrix[intermediate][destination]
< transitiveMatrix[source][destination])
transitiveMatrix[source][destination] = transitiveMatrix[source][intermediate]
+ transitiveMatrix[intermediate][destination];
}
}
}
for (int source = 1; source <= numberofvertices; source++)
System.out.print("\t" + source);
System.out.println();
for (int source = 1; source <= numberofvertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberofvertices; destination++)
{
System.out.print(transitiveMatrix[source][destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int numberofvertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
numberofvertices = scan.nextInt();
adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int source = 1; source <= numberofvertices; source++)
{
for (int destination = 1; destination <= numberofvertices; destination++)
{
adjacency_matrix[source][destination] = scan.nextInt();
if (source == destination)
{
adjacency_matrix[source][destination] = 0;
continue;
}
if (adjacency_matrix[source][destination] == 0)
{
adjacency_matrix[source][destination] = INFINITY;
}
}
}
System.out.println("The Transitive Closure of the Graph");
TransitiveClosure transitiveClosure = new TransitiveClosure(numberofvertices);
transitiveClosure.transitiveClosure(adjacency_matrix);
scan.close();
}
}
/*
Enter the number of vertices
4
Enter the Weighted Matrix for the graph
0 0 3 0
2 0 0 0
0 7 0 1
6 0 0 0
The Transitive Closure of the Graph
1 2 3 4
1 0 10 3 4
2 2 0 5 6
3 7 7 0 1
4 6 16 9 0