programming-examples/java/Graph_Problems_Algorithms/Java Program to Find SSSP(Single Source Shortest Path) in DAG(Directed Acyclic Graphs).java

160 lines
6.1 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
/*This Java program,to find the single source shortest path in directed acyclic graph by Dijkstras algorithm.Dijkstras algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
import java.util.InputMismatchException;
import java.util.Scanner;
public class DijkstraShortestPath
{
private boolean settled[];
private boolean unsettled[];
private int distances[];
private int adjacencymatrix[][];
private int numberofvertices;
public DijkstraShortestPath(int numberofvertices)
{
this.numberofvertices = numberofvertices;
this.settled = new boolean[numberofvertices + 1];
this.unsettled = new boolean[numberofvertices + 1];
this.distances = new int[numberofvertices + 1];
this.adjacencymatrix = new int[numberofvertices + 1][numberofvertices + 1];
}
public void dijkstraShortestPath(int source, int adjacencymatrix[][])
{
int evaluationnode;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
distances[vertex] = Integer.MAX_VALUE;
}
for (int sourcevertex = 1; sourcevertex <= numberofvertices; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= numberofvertices; destinationvertex++)
{
this.adjacencymatrix[sourcevertex][destinationvertex]
= adjacencymatrix[sourcevertex][destinationvertex];
}
}
unsettled[source] = true;
distances[source] = 0;
while (getUnsettledCount(unsettled) != 0)
{
evaluationnode = getNodeWithMinimumDistanceFromUnsettled(unsettled);
unsettled[evaluationnode] = false;
settled[evaluationnode] = true;
evaluateNeighbours(evaluationnode);
}
}
public int getUnsettledCount(boolean unsettled[])
{
int count = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true)
{
count++;
}
}
return count;
}
public int getNodeWithMinimumDistanceFromUnsettled(boolean unsettled[])
{
int min = Integer.MAX_VALUE;
int node = 0;
for (int vertex = 1; vertex <= numberofvertices; vertex++)
{
if (unsettled[vertex] == true && distances[vertex] < min)
{
node = vertex;
min = distances[vertex];
}
}
return node;
}
public void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= numberofvertices; destinationNode++)
{
if (settled[destinationNode] == false)
{
if (adjacencymatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencymatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
unsettled[destinationNode] = true;
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraShortestPath dijkstrasAlgorithm = new DijkstraShortestPath(number_of_vertices);
dijkstrasAlgorithm.dijkstraShortestPath(source, adjacency_matrix);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is "+ dijkstrasAlgorithm.distances[i]);
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
/*
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 9 6 5 3
0 0 0 0 0
0 2 0 4 0
0 0 0 0 0
0 0 0 0 0
Enter the source
1
The Shorted Path to all nodes are
1 to 1 is 0
1 to 2 is 8
1 to 3 is 6
1 to 4 is 5
1 to 5 is 3