programming-examples/java/Data_Structures/KosarajuSharirSCC.java

206 lines
6.5 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac KosarajuSharirSCC.java
* Execution: java KosarajuSharirSCC filename.txt
* Dependencies: Digraph.java TransitiveClosure.java StdOut.java In.java
* Data files: http://algs4.cs.princeton.edu/42directed/tinyDG.txt
*
* Compute the strongly-connected components of a digraph using the
* Kosaraju-Sharir algorithm.
*
* Runs in O(E + V) time.
*
* % java KosarajuSCC tinyDG.txt
* 5 components
* 1
* 0 2 3 4 5
* 9 10 11 12
* 6 8
* 7
*
* % java KosarajuSharirSCC mediumDG.txt
* 10 components
* 21
* 2 5 6 8 9 11 12 13 15 16 18 19 22 23 25 26 28 29 30 31 32 33 34 35 37 38 39 40 42 43 44 46 47 48 49
* 14
* 3 4 17 20 24 27 36
* 41
* 7
* 45
* 1
* 0
* 10
*
* % java -Xss50m KosarajuSharirSCC mediumDG.txt
* 25 components
* 7 11 32 36 61 84 95 116 121 128 230 ...
* 28 73 80 104 115 143 149 164 184 185 ...
* 38 40 200 201 207 218 286 387 418 422 ...
* 12 14 56 78 87 103 216 269 271 272 ...
* 42 48 112 135 160 217 243 246 273 346 ...
* 46 76 96 97 224 237 297 303 308 309 ...
* 9 15 21 22 27 90 167 214 220 225 227 ...
* 74 99 133 146 161 166 202 205 245 262 ...
* 43 83 94 120 125 183 195 206 244 254 ...
* 1 13 54 91 92 93 106 140 156 194 208 ...
* 10 39 67 69 131 144 145 154 168 258 ...
* 6 52 66 113 118 122 139 147 212 213 ...
* 8 127 150 182 203 204 249 367 400 432 ...
* 63 65 101 107 108 136 169 170 171 173 ...
* 55 71 102 155 159 198 228 252 325 419 ...
* 4 25 34 58 70 152 172 196 199 210 226 ...
* 2 44 50 88 109 138 141 178 197 211 ...
* 57 89 129 162 174 179 188 209 238 276 ...
* 33 41 49 119 126 132 148 181 215 221 ...
* 3 18 23 26 35 64 105 124 157 186 251 ...
* 5 16 17 20 31 47 81 98 158 180 187 ...
* 24 29 51 59 75 82 100 114 117 134 151 ...
* 30 45 53 60 72 85 111 130 137 142 163 ...
* 19 37 62 77 79 110 153 352 353 361 ...
* 0 68 86 123 165 176 193 239 289 336 ...
*
*************************************************************************/
/**
* The KosarajuSharirSCC class represents a data type for
* determining the strong components in a digraph.
* The id operation determines in which strong component
* a given vertex lies; the areStronglyConnected operation
* determines whether two vertices are in the same strong component;
* and the count operation determines the number of strong
* components.
* The component identifier of a component is one of the
* vertices in the strong component: two vertices have the same component
* identifier if and only if they are in the same strong component.
*
* This implementation uses the Kosaraju-Sharir algorithm.
* The constructor takes time proportional to V + E
* (in the worst case),
* where V is the number of vertices and E is the number of edges.
* Afterwards, the id , count , and areStronglyConnected
* operations take constant time.
* For alternate implementations of the same API, see
* {@link TarjanSCC} and {@link GabowSCC}.
*
* For additional documentation, see <a href="/algs4/42digraph">Section 4.2</a> of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class KosarajuSharirSCC {
private boolean[] marked; // marked[v] = has vertex v been visited?
private int[] id; // id[v] = id of strong component containing v
private int count; // number of strongly-connected components
/**
* Computes the strong components of the digraph G .
* @param G the digraph
*/
public KosarajuSharirSCC(Digraph G) {
// compute reverse postorder of reverse graph
DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
// run DFS on G, using reverse postorder to guide calculation
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v : dfs.reversePost()) {
if (!marked[v]) {
dfs(G, v);
count++;
}
}
// check that id[] gives strong components
assert check(G);
}
// DFS on graph G
private void dfs(Digraph G, int v) {
marked[v] = true;
id[v] = count;
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
}
}
/**
* Returns the number of strong components.
* @return the number of strong components
*/
public int count() {
return count;
}
/**
* Are vertices v and w in the same strong component?
* @param v one vertex
* @param w the other vertex
* @return true if vertices v and w are in the same
* strong component, and false otherwise
*/
public boolean stronglyConnected(int v, int w) {
return id[v] == id[w];
}
/**
* Returns the component id of the strong component containing vertex v .
* @param v the vertex
* @return the component id of the strong component containing vertex v
*/
public int id(int v) {
return id[v];
}
// does the id[] array contain the strongly connected components?
private boolean check(Digraph G) {
TransitiveClosure tc = new TransitiveClosure(G);
for (int v = 0; v < G.V(); v++) {
for (int w = 0; w < G.V(); w++) {
if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
return false;
}
}
return true;
}
/**
* Unit tests the KosarajuSharirSCC data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Digraph G = new Digraph(in);
KosarajuSharirSCC scc = new KosarajuSharirSCC(G);
// number of connected components
int M = scc.count();
StdOut.println(M + " components");
// compute list of vertices in each strong component
Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M];
for (int i = 0; i < M; i++) {
components[i] = new Queue<Integer>();
}
for (int v = 0; v < G.V(); v++) {
components[scc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < M; i++) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}