267 lines
8.8 KiB
Java
267 lines
8.8 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac FordFulkerson.java
|
||
|
* Execution: java FordFulkerson V E
|
||
|
* Dependencies: FlowNetwork.java FlowEdge.java Queue.java
|
||
|
*
|
||
|
* Ford-Fulkerson algorithm for computing a max flow and
|
||
|
* a min cut using shortest augmenting path rule.
|
||
|
*
|
||
|
*********************************************************************/
|
||
|
|
||
|
/**
|
||
|
* The FordFulkerson class represents a data type for computing a
|
||
|
* maximum st-flow and minimum st-cut in a flow
|
||
|
* network.
|
||
|
*
|
||
|
* This implementation uses the Ford-Fulkerson algorithm with
|
||
|
* the shortest augmenting path heuristic.
|
||
|
* The constructor takes time proportional to E V ( E + V )
|
||
|
* in the worst case and extra space (not including the network)
|
||
|
* proportional to V , where V is the number of vertices
|
||
|
* and E is the number of edges. In practice, the algorithm will
|
||
|
* run much faster.
|
||
|
* Afterwards, the inCut() and value() methods take
|
||
|
* constant time.
|
||
|
*
|
||
|
* If the capacities and initial flow values are all integers, then this
|
||
|
* implementation guarantees to compute an integer-valued maximum flow.
|
||
|
* If the capacities and floating-point numbers, then floating-point
|
||
|
* roundoff error can accumulate.
|
||
|
*
|
||
|
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/64maxflow">Section 6.4</a>
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class FordFulkerson {
|
||
|
private boolean[] marked; // marked[v] = true iff s->v path in residual graph
|
||
|
private FlowEdge[] edgeTo; // edgeTo[v] = last edge on shortest residual s->v path
|
||
|
private double value; // current value of max flow
|
||
|
|
||
|
/**
|
||
|
* Compute a maximum flow and minimum cut in the network G
|
||
|
* from vertex s to vertex t .
|
||
|
* @param G the flow network
|
||
|
* @param s the source vertex
|
||
|
* @param t the sink vertex
|
||
|
* @throws IndexOutOfBoundsException unless 0 <= s < V
|
||
|
* @throws IndexOutOfBoundsException unless 0 <= t < V
|
||
|
* @throws IllegalArgumentException if s = t
|
||
|
* @throws IllegalArgumentException if initial flow is infeasible
|
||
|
*/
|
||
|
public FordFulkerson(FlowNetwork G, int s, int t) {
|
||
|
if (s < 0 || s >= G.V()) {
|
||
|
throw new IndexOutOfBoundsException("Source s is invalid: " + s);
|
||
|
}
|
||
|
if (t < 0 || t >= G.V()) {
|
||
|
throw new IndexOutOfBoundsException("Sink t is invalid: " + t);
|
||
|
}
|
||
|
if (s == t) {
|
||
|
throw new IllegalArgumentException("Source equals sink");
|
||
|
}
|
||
|
value = excess(G, t);
|
||
|
if (!isFeasible(G, s, t)) {
|
||
|
throw new IllegalArgumentException("Initial flow is infeasible");
|
||
|
}
|
||
|
|
||
|
// while there exists an augmenting path, use it
|
||
|
while (hasAugmentingPath(G, s, t)) {
|
||
|
|
||
|
// compute bottleneck capacity
|
||
|
double bottle = Double.POSITIVE_INFINITY;
|
||
|
for (int v = t; v != s; v = edgeTo[v].other(v)) {
|
||
|
bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));
|
||
|
}
|
||
|
|
||
|
// augment flow
|
||
|
for (int v = t; v != s; v = edgeTo[v].other(v)) {
|
||
|
edgeTo[v].addResidualFlowTo(v, bottle);
|
||
|
}
|
||
|
|
||
|
value += bottle;
|
||
|
}
|
||
|
|
||
|
// check optimality conditions
|
||
|
assert check(G, s, t);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the value of the maximum flow.
|
||
|
* @return the value of the maximum flow
|
||
|
*/
|
||
|
public double value() {
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
// is v in the s side of the min s-t cut?
|
||
|
/**
|
||
|
* Is vertex v on the s side of the minimum st-cut?
|
||
|
* @return true if vertex v is on the s side of the micut,
|
||
|
* and false if vertex v is on the t side.
|
||
|
* @throws IndexOutOfBoundsException unless 0 <= v < V
|
||
|
*/
|
||
|
public boolean inCut(int v) {
|
||
|
int V = marked.length;
|
||
|
if (v < 0 || v >= V)
|
||
|
throw new IndexOutOfBoundsException("vertex " + v + " is not between 0 and " + (V-1));
|
||
|
return marked[v];
|
||
|
}
|
||
|
|
||
|
|
||
|
// is there an augmenting path?
|
||
|
// if so, upon termination edgeTo[] will contain a parent-link representation of such a path
|
||
|
private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
|
||
|
edgeTo = new FlowEdge[G.V()];
|
||
|
marked = new boolean[G.V()];
|
||
|
|
||
|
// breadth-first search
|
||
|
Queue<Integer> q = new Queue<Integer>();
|
||
|
q.enqueue(s);
|
||
|
marked[s] = true;
|
||
|
while (!q.isEmpty()) {
|
||
|
int v = q.dequeue();
|
||
|
|
||
|
for (FlowEdge e : G.adj(v)) {
|
||
|
int w = e.other(v);
|
||
|
|
||
|
// if residual capacity from v to w
|
||
|
if (e.residualCapacityTo(w) > 0) {
|
||
|
if (!marked[w]) {
|
||
|
edgeTo[w] = e;
|
||
|
marked[w] = true;
|
||
|
q.enqueue(w);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// is there an augmenting path?
|
||
|
return marked[t];
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// return excess flow at vertex v
|
||
|
private double excess(FlowNetwork G, int v) {
|
||
|
double excess = 0.0;
|
||
|
for (FlowEdge e : G.adj(v)) {
|
||
|
if (v == e.from()) excess -= e.flow();
|
||
|
else excess += e.flow();
|
||
|
}
|
||
|
return excess;
|
||
|
}
|
||
|
|
||
|
// return excess flow at vertex v
|
||
|
private boolean isFeasible(FlowNetwork G, int s, int t) {
|
||
|
double EPSILON = 1E-11;
|
||
|
|
||
|
// check that capacity constraints are satisfied
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
for (FlowEdge e : G.adj(v)) {
|
||
|
if (e.flow() < -EPSILON || e.flow() > e.capacity() + EPSILON) {
|
||
|
System.err.println("Edge does not satisfy capacity constraints: " + e);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// check that net flow into a vertex equals zero, except at source and sink
|
||
|
if (Math.abs(value + excess(G, s)) > EPSILON) {
|
||
|
System.err.println("Excess at source = " + excess(G, s));
|
||
|
System.err.println("Max flow = " + value);
|
||
|
return false;
|
||
|
}
|
||
|
if (Math.abs(value - excess(G, t)) > EPSILON) {
|
||
|
System.err.println("Excess at sink = " + excess(G, t));
|
||
|
System.err.println("Max flow = " + value);
|
||
|
return false;
|
||
|
}
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
if (v == s || v == t) continue;
|
||
|
else if (Math.abs(excess(G, v)) > EPSILON) {
|
||
|
System.err.println("Net flow out of " + v + " doesn't equal zero");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// check optimality conditions
|
||
|
private boolean check(FlowNetwork G, int s, int t) {
|
||
|
|
||
|
// check that flow is feasible
|
||
|
if (!isFeasible(G, s, t)) {
|
||
|
System.err.println("Flow is infeasible");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// check that s is on the source side of min cut and that t is not on source side
|
||
|
if (!inCut(s)) {
|
||
|
System.err.println("source " + s + " is not on source side of min cut");
|
||
|
return false;
|
||
|
}
|
||
|
if (inCut(t)) {
|
||
|
System.err.println("sink " + t + " is on source side of min cut");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// check that value of min cut = value of max flow
|
||
|
double mincutValue = 0.0;
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
for (FlowEdge e : G.adj(v)) {
|
||
|
if ((v == e.from()) && inCut(e.from()) && !inCut(e.to()))
|
||
|
mincutValue += e.capacity();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double EPSILON = 1E-11;
|
||
|
if (Math.abs(mincutValue - value) > EPSILON) {
|
||
|
System.err.println("Max flow value = " + value + ", min cut value = " + mincutValue);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Unit tests the FordFulkerson data type.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
|
||
|
// create flow network with V vertices and E edges
|
||
|
int V = Integer.parseInt(args[0]);
|
||
|
int E = Integer.parseInt(args[1]);
|
||
|
int s = 0, t = V-1;
|
||
|
FlowNetwork G = new FlowNetwork(V, E);
|
||
|
StdOut.println(G);
|
||
|
|
||
|
// compute maximum flow and minimum cut
|
||
|
FordFulkerson maxflow = new FordFulkerson(G, s, t);
|
||
|
StdOut.println("Max flow from " + s + " to " + t);
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
for (FlowEdge e : G.adj(v)) {
|
||
|
if ((v == e.from()) && e.flow() > 0)
|
||
|
StdOut.println(" " + e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// print min-cut
|
||
|
StdOut.print("Min cut: ");
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
if (maxflow.inCut(v)) StdOut.print(v + " ");
|
||
|
}
|
||
|
StdOut.println();
|
||
|
|
||
|
StdOut.println("Max flow value = " + maxflow.value());
|
||
|
}
|
||
|
|
||
|
}
|