programming-examples/java/Data_Structures/DepthFirstOrder.java

233 lines
6.8 KiB
Java
Raw Normal View History

2019-11-15 12:59:38 +01:00
import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac DepthFirstOrder.java
* Execution: java DepthFirstOrder filename.txt
* Dependencies: Digraph.java Queue.java Stack.java StdOut.java
* EdgeWeightedDigraph.java DirectedEdge.java
* Data files: http://algs4.cs.princeton.edu/42directed/tinyDAG.txt
* http://algs4.cs.princeton.edu/42directed/tinyDG.txt
*
* Compute preorder and postorder for a digraph or edge-weighted digraph.
* Runs in O(E + V) time.
*
* % java DepthFirstOrder tinyDAG.txt
* v pre post
* --------------
* 0 0 8
* 1 3 2
* 2 9 10
* 3 10 9
* 4 2 0
* 5 1 1
* 6 4 7
* 7 11 11
* 8 12 12
* 9 5 6
* 10 8 5
* 11 6 4
* 12 7 3
* Preorder: 0 5 4 1 6 9 11 12 10 2 3 7 8
* Postorder: 4 5 1 12 11 10 9 6 0 3 2 7 8
* Reverse postorder: 8 7 2 3 0 6 9 10 11 12 1 5 4
*
*************************************************************************/
/**
* The DepthFirstOrder class represents a data type for
* determining depth-first search ordering of the vertices in a digraph
* or edge-weighted digraph, including preorder, postorder, and reverse postorder.
*
* This implementation uses depth-first search.
* The constructor takes time proportional to V + E
* (in the worst case),
* where V is the number of vertices and E is the number of edges.
* Afterwards, the preorder , postorder , and reverse postorder
* operation takes take time proportional to V .
*
*
* For additional documentation, see <a href="/algs4/42digraph">Section 4.2</a> of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class DepthFirstOrder {
private boolean[] marked; // marked[v] = has v been marked in dfs?
private int[] pre; // pre[v] = preorder number of v
private int[] post; // post[v] = postorder number of v
private Queue<Integer> preorder; // vertices in preorder
private Queue<Integer> postorder; // vertices in postorder
private int preCounter; // counter or preorder numbering
private int postCounter; // counter for postorder numbering
/**
* Determines a depth-first order for the digraph G .
* @param G the digraph
*/
public DepthFirstOrder(Digraph G) {
pre = new int[G.V()];
post = new int[G.V()];
postorder = new Queue<Integer>();
preorder = new Queue<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
}
/**
* Determines a depth-first order for the edge-weighted digraph G .
* @param G the edge-weighted digraph
*/
public DepthFirstOrder(EdgeWeightedDigraph G) {
pre = new int[G.V()];
post = new int[G.V()];
postorder = new Queue<Integer>();
preorder = new Queue<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, v);
}
// run DFS in digraph G from vertex v and compute preorder/postorder
private void dfs(Digraph G, int v) {
marked[v] = true;
pre[v] = preCounter++;
preorder.enqueue(v);
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs(G, w);
}
}
postorder.enqueue(v);
post[v] = postCounter++;
}
// run DFS in edge-weighted digraph G from vertex v and compute preorder/postorder
private void dfs(EdgeWeightedDigraph G, int v) {
marked[v] = true;
pre[v] = preCounter++;
preorder.enqueue(v);
for (DirectedEdge e : G.adj(v)) {
int w = e.to();
if (!marked[w]) {
dfs(G, w);
}
}
postorder.enqueue(v);
post[v] = postCounter++;
}
/**
* Returns the preorder number of vertex v .
* @param v the vertex
* @return the preorder number of vertex v
*/
public int pre(int v) {
return pre[v];
}
/**
* Returns the postorder number of vertex v .
* @param v the vertex
* @return the postorder number of vertex v
*/
public int post(int v) {
return post[v];
}
/**
* Returns the vertices in postorder.
* @return the vertices in postorder, as an iterable of vertices
*/
public Iterable<Integer> post() {
return postorder;
}
/**
* Returns the vertices in preorder.
* @return the vertices in preorder, as an iterable of vertices
*/
public Iterable<Integer> pre() {
return preorder;
}
/**
* Returns the vertices in reverse postorder.
* @return the vertices in reverse postorder, as an iterable of vertices
*/
public Iterable<Integer> reversePost() {
Stack<Integer> reverse = new Stack<Integer>();
for (int v : postorder)
reverse.push(v);
return reverse;
}
// check that pre() and post() are consistent with pre(v) and post(v)
private boolean check(Digraph G) {
// check that post(v) is consistent with post()
int r = 0;
for (int v : post()) {
if (post(v) != r) {
StdOut.println("post(v) and post() inconsistent");
return false;
}
r++;
}
// check that pre(v) is consistent with pre()
r = 0;
for (int v : pre()) {
if (pre(v) != r) {
StdOut.println("pre(v) and pre() inconsistent");
return false;
}
r++;
}
return true;
}
/**
* Unit tests the DepthFirstOrder data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Digraph G = new Digraph(in);
DepthFirstOrder dfs = new DepthFirstOrder(G);
StdOut.println(" v pre post");
StdOut.println("--------------");
for (int v = 0; v < G.V(); v++) {
StdOut.printf("%4d %4d %4d\n", v, dfs.pre(v), dfs.post(v));
}
StdOut.print("Preorder: ");
for (int v : dfs.pre()) {
StdOut.print(v + " ");
}
StdOut.println();
StdOut.print("Postorder: ");
for (int v : dfs.post()) {
StdOut.print(v + " ");
}
StdOut.println();
StdOut.print("Reverse postorder: ");
for (int v : dfs.reversePost()) {
StdOut.print(v + " ");
}
StdOut.println();
}
}