161 lines
4.8 KiB
Java
161 lines
4.8 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.In;
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac CC.java
|
||
|
* Execution: java CC filename.txt
|
||
|
* Dependencies: Graph.java StdOut.java Queue.java
|
||
|
* Data files: http://algs4.cs.princeton.edu/41undirected/tinyG.txt
|
||
|
*
|
||
|
* Compute connected components using depth first search.
|
||
|
* Runs in O(E + V) time.
|
||
|
*
|
||
|
* % java CC tinyG.txt
|
||
|
* 3 components
|
||
|
* 0 1 2 3 4 5 6
|
||
|
* 7 8
|
||
|
* 9 10 11 12
|
||
|
*
|
||
|
* % java CC mediumG.txt
|
||
|
* 1 components
|
||
|
* 0 1 2 3 4 5 6 7 8 9 10 ...
|
||
|
*
|
||
|
* % java -Xss50m CC largeG.txt
|
||
|
* 1 components
|
||
|
* 0 1 2 3 4 5 6 7 8 9 10 ...
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* The CC class represents a data type for
|
||
|
* determining the connected components in an undirected graph.
|
||
|
* The id operation determines in which connected component
|
||
|
* a given vertex lies; the areConnected operation
|
||
|
* determines whether two vertices are in the same connected component;
|
||
|
* the count operation determines the number of connected
|
||
|
* components; and the size operation determines the number
|
||
|
* of vertices in the connect component containing a given vertex.
|
||
|
|
||
|
* The component identifier of a connected component is one of the
|
||
|
* vertices in the connected component: two vertices have the same component
|
||
|
* identifier if and only if they are in the same connected component.
|
||
|
|
||
|
*
|
||
|
* This implementation uses depth-first search.
|
||
|
* The constructor takes time proportional to V + E
|
||
|
* (in the worst case),
|
||
|
* where V is the number of vertices and E is the number of edges.
|
||
|
* Afterwards, the id , count , areConnected ,
|
||
|
* and size operations take constant time.
|
||
|
*
|
||
|
* For additional documentation, see <a href="/algs4/41graph">Section 4.1</a> of
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class CC {
|
||
|
private boolean[] marked; // marked[v] = has vertex v been marked?
|
||
|
private int[] id; // id[v] = id of connected component containing v
|
||
|
private int[] size; // size[id] = number of vertices in given component
|
||
|
private int count; // number of connected components
|
||
|
|
||
|
/**
|
||
|
* Computes the connected components of the undirected graph G .
|
||
|
* @param G the graph
|
||
|
*/
|
||
|
public CC(Graph G) {
|
||
|
marked = new boolean[G.V()];
|
||
|
id = new int[G.V()];
|
||
|
size = new int[G.V()];
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
if (!marked[v]) {
|
||
|
dfs(G, v);
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// depth-first search
|
||
|
private void dfs(Graph G, int v) {
|
||
|
marked[v] = true;
|
||
|
id[v] = count;
|
||
|
size[count]++;
|
||
|
for (int w : G.adj(v)) {
|
||
|
if (!marked[w]) {
|
||
|
dfs(G, w);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the component id of the connected component containing vertex v .
|
||
|
* @param v the vertex
|
||
|
* @return the component id of the connected component containing vertex v
|
||
|
*/
|
||
|
public int id(int v) {
|
||
|
return id[v];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of vertices in the connected component containing vertex v .
|
||
|
* @param v the vertex
|
||
|
* @return the number of vertices in the connected component containing vertex v
|
||
|
*/
|
||
|
public int size(int v) {
|
||
|
return size[id[v]];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of connected components.
|
||
|
* @return the number of connected components
|
||
|
*/
|
||
|
public int count() {
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Are vertices v and w in the same connected component?
|
||
|
* @param v one vertex
|
||
|
* @param w the other vertex
|
||
|
* @return true if vertices v and w are in the same
|
||
|
* connected component, and false otherwise
|
||
|
*/
|
||
|
public boolean areConnected(int v, int w) {
|
||
|
return id(v) == id(w);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Unit tests the CC data type.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
In in = new In(args[0]);
|
||
|
Graph G = new Graph(in);
|
||
|
CC cc = new CC(G);
|
||
|
|
||
|
// number of connected components
|
||
|
int M = cc.count();
|
||
|
StdOut.println(M + " components");
|
||
|
|
||
|
// compute list of vertices in each connected component
|
||
|
Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M];
|
||
|
for (int i = 0; i < M; i++) {
|
||
|
components[i] = new Queue<Integer>();
|
||
|
}
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
components[cc.id(v)].enqueue(v);
|
||
|
}
|
||
|
|
||
|
// print results
|
||
|
for (int i = 0; i < M; i++) {
|
||
|
for (int v : components[i]) {
|
||
|
StdOut.print(v + " ");
|
||
|
}
|
||
|
StdOut.println();
|
||
|
}
|
||
|
}
|
||
|
}
|